-澳门游戏娱乐场棋牌
��<html xmlns:v="urn:schemas-microsoft-com:vml"
xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:w="urn:schemas-microsoft-com:office:word"
xmlns:m="http://schemas.microsoft.com/office/2004/12/omml"
xmlns="http://www.w3.org/tr/rec-html40">
<head>
<meta http-equiv=content-type content="text/html; charset=unicode">
<meta name=progid content=word.document>
<meta name=generator content="microsoft word 15">
<meta name=originator content="microsoft word 15">
<link rel=file-list href="2020.files/filelist.xml">
<link rel=edit-time-data href="2020.files/editdata.mso">
<!--[if !mso]>
<style>
v\:* {behavior:url(/clunwen/2020.html);}
o\:* {behavior:url(/clunwen/2020.html);}
w\:* {behavior:url(/clunwen/2020.html);}
.shape {behavior:url(/clunwen/2020.html);}
</style>
<![endif]-->
<title>2020���e</title>
<!--[if gte mso 9]><xml>
<o:documentproperties>
<o:author>cd</o:author>
<o:lastauthor>cd</o:lastauthor>
<o:revision>6</o:revision>
<o:totaltime>7</o:totaltime>
<o:created>2020-05-26t02:56:00z</o:created>
<o:lastsaved>2021-03-29t02:46:00z</o:lastsaved>
<o:pages>21</o:pages>
<o:words>14513</o:words>
<o:characters>82730</o:characters>
<o:lines>689</o:lines>
<o:paragraphs>194</o:paragraphs>
<o:characterswithspaces>97049</o:characterswithspaces>
<o:version>16.00</o:version>
</o:documentproperties>
<o:officedocumentsettings>
<o:allowpng/>
</o:officedocumentsettings>
</xml><![endif]-->
<link rel=themedata href="2020.files/themedata.thmx">
<link rel=colorschememapping href="2020.files/colorschememapping.xml">
<!--[if gte mso 9]><xml>
<w:worddocument>
<w:view>print</w:view>
<w:zoom>90</w:zoom>
<w:trackmoves>false</w:trackmoves>
<w:trackformatting/>
<w:validateagainstschemas/>
<w:saveifxmlinvalid>false</w:saveifxmlinvalid>
<w:ignoremixedcontent>false</w:ignoremixedcontent>
<w:alwaysshowplaceholdertext>false</w:alwaysshowplaceholdertext>
<w:donotpromoteqf/>
<w:lidthemeother>en-us</w:lidthemeother>
<w:lidthemeasian>zh-cn</w:lidthemeasian>
<w:lidthemecomplexscript>x-none</w:lidthemecomplexscript>
<w:compatibility>
<w:breakwrappedtables/>
<w:splitpgbreakandparamark/>
<w:usefelayout/>
</w:compatibility>
<w:browserlevel>microsoftinternetexplorer4</w:browserlevel>
<m:mathpr>
<m:mathfont m:val="cambria math"/>
<m:brkbin m:val="before"/>
<m:brkbinsub m:val="--"/>
<m:smallfrac m:val="off"/>
<m:dispdef/>
<m:lmargin m:val="0"/>
<m:rmargin m:val="0"/>
<m:defjc m:val="centergroup"/>
<m:wrapindent m:val="1440"/>
<m:intlim m:val="subsup"/>
<m:narylim m:val="undovr"/>
</m:mathpr></w:worddocument>
</xml><![endif]--><!--[if gte mso 9]><xml>
<w:latentstyles deflockedstate="false" defunhidewhenused="false"
defsemihidden="false" defqformat="false" defpriority="99"
latentstylecount="371">
<w:lsdexception locked="false" priority="0" qformat="true" name="normal"/>
<w:lsdexception locked="false" priority="9" qformat="true" name="heading 1"/>
<w:lsdexception locked="false" priority="9" semihidden="true"
unhidewhenused="true" qformat="true" name="heading 2"/>
<w:lsdexception locked="false" priority="9" semihidden="true"
unhidewhenused="true" qformat="true" name="heading 3"/>
<w:lsdexception locked="false" priority="0" semihidden="true"
unhidewhenused="true" qformat="true" name="heading 4"/>
<w:lsdexception locked="false" priority="9" semihidden="true"
unhidewhenused="true" qformat="true" name="heading 5"/>
<w:lsdexception locked="false" priority="9" semihidden="true"
unhidewhenused="true" qformat="true" name="heading 6"/>
<w:lsdexception locked="false" priority="9" semihidden="true"
unhidewhenused="true" qformat="true" name="heading 7"/>
<w:lsdexception locked="false" priority="9" semihidden="true"
unhidewhenused="true" qformat="true" name="heading 8"/>
<w:lsdexception locked="false" priority="9" semihidden="true"
unhidewhenused="true" qformat="true" name="heading 9"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="index 1"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="index 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="index 3"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="index 4"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="index 5"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="index 6"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="index 7"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="index 8"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="index 9"/>
<w:lsdexception locked="false" priority="39" semihidden="true"
unhidewhenused="true" name="toc 1"/>
<w:lsdexception locked="false" priority="39" semihidden="true"
unhidewhenused="true" name="toc 2"/>
<w:lsdexception locked="false" priority="39" semihidden="true"
unhidewhenused="true" name="toc 3"/>
<w:lsdexception locked="false" priority="39" semihidden="true"
unhidewhenused="true" name="toc 4"/>
<w:lsdexception locked="false" priority="39" semihidden="true"
unhidewhenused="true" name="toc 5"/>
<w:lsdexception locked="false" priority="39" semihidden="true"
unhidewhenused="true" name="toc 6"/>
<w:lsdexception locked="false" priority="39" semihidden="true"
unhidewhenused="true" name="toc 7"/>
<w:lsdexception locked="false" priority="39" semihidden="true"
unhidewhenused="true" name="toc 8"/>
<w:lsdexception locked="false" priority="39" semihidden="true"
unhidewhenused="true" name="toc 9"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
qformat="true" name="normal indent"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="footnote text"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="annotation text"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="header"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
qformat="true" name="footer"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="index heading"/>
<w:lsdexception locked="false" priority="35" semihidden="true"
unhidewhenused="true" qformat="true" name="caption"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table of figures"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="envelope address"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="envelope return"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="footnote reference"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="annotation reference"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="line number"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="page number"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="endnote reference"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="endnote text"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table of authorities"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="macro"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="toa heading"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list bullet"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list number"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list 3"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list 4"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list 5"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list bullet 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list bullet 3"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list bullet 4"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list bullet 5"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list number 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list number 3"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list number 4"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list number 5"/>
<w:lsdexception locked="false" qformat="true" name="title"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="closing"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="signature"/>
<w:lsdexception locked="false" priority="1" semihidden="true"
unhidewhenused="true" name="default paragraph font"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="body text"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="body text indent"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list continue"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list continue 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list continue 3"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list continue 4"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="list continue 5"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="message header"/>
<w:lsdexception locked="false" priority="11" qformat="true" name="subtitle"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="salutation"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="date"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="body text first indent"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="body text first indent 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="note heading"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="body text 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="body text 3"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="body text indent 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="body text indent 3"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="block text"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
qformat="true" name="hyperlink"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="followedhyperlink"/>
<w:lsdexception locked="false" priority="22" qformat="true" name="strong"/>
<w:lsdexception locked="false" priority="20" qformat="true" name="emphasis"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="document map"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
qformat="true" name="plain text"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="e-mail signature"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="html top of form"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="html bottom of form"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="normal (web)"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="html acronym"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="html address"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="html cite"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="html code"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="html definition"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="html keyboard"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="html preformatted"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="html sample"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="html typewriter"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="html variable"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="normal table"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="annotation subject"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="no list"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="outline list 1"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="outline list 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="outline list 3"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table simple 1"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table simple 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table simple 3"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table classic 1"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table classic 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table classic 3"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table classic 4"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table colorful 1"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table colorful 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table colorful 3"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table columns 1"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table columns 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table columns 3"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table columns 4"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table columns 5"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table grid 1"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table grid 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table grid 3"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table grid 4"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table grid 5"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table grid 6"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table grid 7"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table grid 8"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table list 1"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table list 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table list 3"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table list 4"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table list 5"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table list 6"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table list 7"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table list 8"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table 3d effects 1"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table 3d effects 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table 3d effects 3"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table contemporary"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table elegant"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table professional"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table subtle 1"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table subtle 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table web 1"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table web 2"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table web 3"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="balloon text"/>
<w:lsdexception locked="false" priority="39" name="table grid"/>
<w:lsdexception locked="false" semihidden="true" unhidewhenused="true"
name="table theme"/>
<w:lsdexception locked="false" semihidden="true" name="placeholder text"/>
<w:lsdexception locked="false" priority="1" qformat="true" name="no spacing"/>
<w:lsdexception locked="false" priority="60" name="light shading"/>
<w:lsdexception locked="false" priority="61" name="light list"/>
<w:lsdexception locked="false" priority="62" name="light grid"/>
<w:lsdexception locked="false" priority="63" name="medium shading 1"/>
<w:lsdexception locked="false" priority="64" name="medium shading 2"/>
<w:lsdexception locked="false" priority="65" name="medium list 1"/>
<w:lsdexception locked="false" priority="66" name="medium list 2"/>
<w:lsdexception locked="false" priority="67" name="medium grid 1"/>
<w:lsdexception locked="false" priority="68" name="medium grid 2"/>
<w:lsdexception locked="false" priority="69" name="medium grid 3"/>
<w:lsdexception locked="false" priority="70" name="dark list"/>
<w:lsdexception locked="false" priority="71" name="colorful shading"/>
<w:lsdexception locked="false" priority="72" name="colorful list"/>
<w:lsdexception locked="false" priority="73" name="colorful grid"/>
<w:lsdexception locked="false" priority="60" name="light shading accent 1"/>
<w:lsdexception locked="false" priority="61" name="light list accent 1"/>
<w:lsdexception locked="false" priority="62" name="light grid accent 1"/>
<w:lsdexception locked="false" priority="63" name="medium shading 1 accent 1"/>
<w:lsdexception locked="false" priority="64" name="medium shading 2 accent 1"/>
<w:lsdexception locked="false" priority="65" name="medium list 1 accent 1"/>
<w:lsdexception locked="false" semihidden="true" name="revision"/>
<w:lsdexception locked="false" priority="34" qformat="true"
name="list paragraph"/>
<w:lsdexception locked="false" priority="29" qformat="true" name="quote"/>
<w:lsdexception locked="false" priority="30" qformat="true"
name="intense quote"/>
<w:lsdexception locked="false" priority="66" name="medium list 2 accent 1"/>
<w:lsdexception locked="false" priority="67" name="medium grid 1 accent 1"/>
<w:lsdexception locked="false" priority="68" name="medium grid 2 accent 1"/>
<w:lsdexception locked="false" priority="69" name="medium grid 3 accent 1"/>
<w:lsdexception locked="false" priority="70" name="dark list accent 1"/>
<w:lsdexception locked="false" priority="71" name="colorful shading accent 1"/>
<w:lsdexception locked="false" priority="72" name="colorful list accent 1"/>
<w:lsdexception locked="false" priority="73" name="colorful grid accent 1"/>
<w:lsdexception locked="false" priority="60" name="light shading accent 2"/>
<w:lsdexception locked="false" priority="61" name="light list accent 2"/>
<w:lsdexception locked="false" priority="62" name="light grid accent 2"/>
<w:lsdexception locked="false" priority="63" name="medium shading 1 accent 2"/>
<w:lsdexception locked="false" priority="64" name="medium shading 2 accent 2"/>
<w:lsdexception locked="false" priority="65" name="medium list 1 accent 2"/>
<w:lsdexception locked="false" priority="66" name="medium list 2 accent 2"/>
<w:lsdexception locked="false" priority="67" name="medium grid 1 accent 2"/>
<w:lsdexception locked="false" priority="68" name="medium grid 2 accent 2"/>
<w:lsdexception locked="false" priority="69" name="medium grid 3 accent 2"/>
<w:lsdexception locked="false" priority="70" name="dark list accent 2"/>
<w:lsdexception locked="false" priority="71" name="colorful shading accent 2"/>
<w:lsdexception locked="false" priority="72" name="colorful list accent 2"/>
<w:lsdexception locked="false" priority="73" name="colorful grid accent 2"/>
<w:lsdexception locked="false" priority="60" name="light shading accent 3"/>
<w:lsdexception locked="false" priority="61" name="light list accent 3"/>
<w:lsdexception locked="false" priority="62" name="light grid accent 3"/>
<w:lsdexception locked="false" priority="63" name="medium shading 1 accent 3"/>
<w:lsdexception locked="false" priority="64" name="medium shading 2 accent 3"/>
<w:lsdexception locked="false" priority="65" name="medium list 1 accent 3"/>
<w:lsdexception locked="false" priority="66" name="medium list 2 accent 3"/>
<w:lsdexception locked="false" priority="67" name="medium grid 1 accent 3"/>
<w:lsdexception locked="false" priority="68" name="medium grid 2 accent 3"/>
<w:lsdexception locked="false" priority="69" name="medium grid 3 accent 3"/>
<w:lsdexception locked="false" priority="70" name="dark list accent 3"/>
<w:lsdexception locked="false" priority="71" name="colorful shading accent 3"/>
<w:lsdexception locked="false" priority="72" name="colorful list accent 3"/>
<w:lsdexception locked="false" priority="73" name="colorful grid accent 3"/>
<w:lsdexception locked="false" priority="60" name="light shading accent 4"/>
<w:lsdexception locked="false" priority="61" name="light list accent 4"/>
<w:lsdexception locked="false" priority="62" name="light grid accent 4"/>
<w:lsdexception locked="false" priority="63" name="medium shading 1 accent 4"/>
<w:lsdexception locked="false" priority="64" name="medium shading 2 accent 4"/>
<w:lsdexception locked="false" priority="65" name="medium list 1 accent 4"/>
<w:lsdexception locked="false" priority="66" name="medium list 2 accent 4"/>
<w:lsdexception locked="false" priority="67" name="medium grid 1 accent 4"/>
<w:lsdexception locked="false" priority="68" name="medium grid 2 accent 4"/>
<w:lsdexception locked="false" priority="69" name="medium grid 3 accent 4"/>
<w:lsdexception locked="false" priority="70" name="dark list accent 4"/>
<w:lsdexception locked="false" priority="71" name="colorful shading accent 4"/>
<w:lsdexception locked="false" priority="72" name="colorful list accent 4"/>
<w:lsdexception locked="false" priority="73" name="colorful grid accent 4"/>
<w:lsdexception locked="false" priority="60" name="light shading accent 5"/>
<w:lsdexception locked="false" priority="61" name="light list accent 5"/>
<w:lsdexception locked="false" priority="62" name="light grid accent 5"/>
<w:lsdexception locked="false" priority="63" name="medium shading 1 accent 5"/>
<w:lsdexception locked="false" priority="64" name="medium shading 2 accent 5"/>
<w:lsdexception locked="false" priority="65" name="medium list 1 accent 5"/>
<w:lsdexception locked="false" priority="66" name="medium list 2 accent 5"/>
<w:lsdexception locked="false" priority="67" name="medium grid 1 accent 5"/>
<w:lsdexception locked="false" priority="68" name="medium grid 2 accent 5"/>
<w:lsdexception locked="false" priority="69" name="medium grid 3 accent 5"/>
<w:lsdexception locked="false" priority="70" name="dark list accent 5"/>
<w:lsdexception locked="false" priority="71" name="colorful shading accent 5"/>
<w:lsdexception locked="false" priority="72" name="colorful list accent 5"/>
<w:lsdexception locked="false" priority="73" name="colorful grid accent 5"/>
<w:lsdexception locked="false" priority="60" name="light shading accent 6"/>
<w:lsdexception locked="false" priority="61" name="light list accent 6"/>
<w:lsdexception locked="false" priority="62" name="light grid accent 6"/>
<w:lsdexception locked="false" priority="63" name="medium shading 1 accent 6"/>
<w:lsdexception locked="false" priority="64" name="medium shading 2 accent 6"/>
<w:lsdexception locked="false" priority="65" name="medium list 1 accent 6"/>
<w:lsdexception locked="false" priority="66" name="medium list 2 accent 6"/>
<w:lsdexception locked="false" priority="67" name="medium grid 1 accent 6"/>
<w:lsdexception locked="false" priority="68" name="medium grid 2 accent 6"/>
<w:lsdexception locked="false" priority="69" name="medium grid 3 accent 6"/>
<w:lsdexception locked="false" priority="70" name="dark list accent 6"/>
<w:lsdexception locked="false" priority="71" name="colorful shading accent 6"/>
<w:lsdexception locked="false" priority="72" name="colorful list accent 6"/>
<w:lsdexception locked="false" priority="73" name="colorful grid accent 6"/>
<w:lsdexception locked="false" priority="19" qformat="true"
name="subtle emphasis"/>
<w:lsdexception locked="false" priority="21" qformat="true"
name="intense emphasis"/>
<w:lsdexception locked="false" priority="31" qformat="true"
name="subtle reference"/>
<w:lsdexception locked="false" priority="32" qformat="true"
name="intense reference"/>
<w:lsdexception locked="false" priority="33" qformat="true" name="book title"/>
<w:lsdexception locked="false" priority="37" semihidden="true"
unhidewhenused="true" name="bibliography"/>
<w:lsdexception locked="false" priority="39" semihidden="true"
unhidewhenused="true" qformat="true" name="toc heading"/>
<w:lsdexception locked="false" priority="41" name="plain table 1"/>
<w:lsdexception locked="false" priority="42" name="plain table 2"/>
<w:lsdexception locked="false" priority="43" name="plain table 3"/>
<w:lsdexception locked="false" priority="44" name="plain table 4"/>
<w:lsdexception locked="false" priority="45" name="plain table 5"/>
<w:lsdexception locked="false" priority="40" name="grid table light"/>
<w:lsdexception locked="false" priority="46" name="grid table 1 light"/>
<w:lsdexception locked="false" priority="47" name="grid table 2"/>
<w:lsdexception locked="false" priority="48" name="grid table 3"/>
<w:lsdexception locked="false" priority="49" name="grid table 4"/>
<w:lsdexception locked="false" priority="50" name="grid table 5 dark"/>
<w:lsdexception locked="false" priority="51" name="grid table 6 colorful"/>
<w:lsdexception locked="false" priority="52" name="grid table 7 colorful"/>
<w:lsdexception locked="false" priority="46"
name="grid table 1 light accent 1"/>
<w:lsdexception locked="false" priority="47" name="grid table 2 accent 1"/>
<w:lsdexception locked="false" priority="48" name="grid table 3 accent 1"/>
<w:lsdexception locked="false" priority="49" name="grid table 4 accent 1"/>
<w:lsdexception locked="false" priority="50" name="grid table 5 dark accent 1"/>
<w:lsdexception locked="false" priority="51"
name="grid table 6 colorful accent 1"/>
<w:lsdexception locked="false" priority="52"
name="grid table 7 colorful accent 1"/>
<w:lsdexception locked="false" priority="46"
name="grid table 1 light accent 2"/>
<w:lsdexception locked="false" priority="47" name="grid table 2 accent 2"/>
<w:lsdexception locked="false" priority="48" name="grid table 3 accent 2"/>
<w:lsdexception locked="false" priority="49" name="grid table 4 accent 2"/>
<w:lsdexception locked="false" priority="50" name="grid table 5 dark accent 2"/>
<w:lsdexception locked="false" priority="51"
name="grid table 6 colorful accent 2"/>
<w:lsdexception locked="false" priority="52"
name="grid table 7 colorful accent 2"/>
<w:lsdexception locked="false" priority="46"
name="grid table 1 light accent 3"/>
<w:lsdexception locked="false" priority="47" name="grid table 2 accent 3"/>
<w:lsdexception locked="false" priority="48" name="grid table 3 accent 3"/>
<w:lsdexception locked="false" priority="49" name="grid table 4 accent 3"/>
<w:lsdexception locked="false" priority="50" name="grid table 5 dark accent 3"/>
<w:lsdexception locked="false" priority="51"
name="grid table 6 colorful accent 3"/>
<w:lsdexception locked="false" priority="52"
name="grid table 7 colorful accent 3"/>
<w:lsdexception locked="false" priority="46"
name="grid table 1 light accent 4"/>
<w:lsdexception locked="false" priority="47" name="grid table 2 accent 4"/>
<w:lsdexception locked="false" priority="48" name="grid table 3 accent 4"/>
<w:lsdexception locked="false" priority="49" name="grid table 4 accent 4"/>
<w:lsdexception locked="false" priority="50" name="grid table 5 dark accent 4"/>
<w:lsdexception locked="false" priority="51"
name="grid table 6 colorful accent 4"/>
<w:lsdexception locked="false" priority="52"
name="grid table 7 colorful accent 4"/>
<w:lsdexception locked="false" priority="46"
name="grid table 1 light accent 5"/>
<w:lsdexception locked="false" priority="47" name="grid table 2 accent 5"/>
<w:lsdexception locked="false" priority="48" name="grid table 3 accent 5"/>
<w:lsdexception locked="false" priority="49" name="grid table 4 accent 5"/>
<w:lsdexception locked="false" priority="50" name="grid table 5 dark accent 5"/>
<w:lsdexception locked="false" priority="51"
name="grid table 6 colorful accent 5"/>
<w:lsdexception locked="false" priority="52"
name="grid table 7 colorful accent 5"/>
<w:lsdexception locked="false" priority="46"
name="grid table 1 light accent 6"/>
<w:lsdexception locked="false" priority="47" name="grid table 2 accent 6"/>
<w:lsdexception locked="false" priority="48" name="grid table 3 accent 6"/>
<w:lsdexception locked="false" priority="49" name="grid table 4 accent 6"/>
<w:lsdexception locked="false" priority="50" name="grid table 5 dark accent 6"/>
<w:lsdexception locked="false" priority="51"
name="grid table 6 colorful accent 6"/>
<w:lsdexception locked="false" priority="52"
name="grid table 7 colorful accent 6"/>
<w:lsdexception locked="false" priority="46" name="list table 1 light"/>
<w:lsdexception locked="false" priority="47" name="list table 2"/>
<w:lsdexception locked="false" priority="48" name="list table 3"/>
<w:lsdexception locked="false" priority="49" name="list table 4"/>
<w:lsdexception locked="false" priority="50" name="list table 5 dark"/>
<w:lsdexception locked="false" priority="51" name="list table 6 colorful"/>
<w:lsdexception locked="false" priority="52" name="list table 7 colorful"/>
<w:lsdexception locked="false" priority="46"
name="list table 1 light accent 1"/>
<w:lsdexception locked="false" priority="47" name="list table 2 accent 1"/>
<w:lsdexception locked="false" priority="48" name="list table 3 accent 1"/>
<w:lsdexception locked="false" priority="49" name="list table 4 accent 1"/>
<w:lsdexception locked="false" priority="50" name="list table 5 dark accent 1"/>
<w:lsdexception locked="false" priority="51"
name="list table 6 colorful accent 1"/>
<w:lsdexception locked="false" priority="52"
name="list table 7 colorful accent 1"/>
<w:lsdexception locked="false" priority="46"
name="list table 1 light accent 2"/>
<w:lsdexception locked="false" priority="47" name="list table 2 accent 2"/>
<w:lsdexception locked="false" priority="48" name="list table 3 accent 2"/>
<w:lsdexception locked="false" priority="49" name="list table 4 accent 2"/>
<w:lsdexception locked="false" priority="50" name="list table 5 dark accent 2"/>
<w:lsdexception locked="false" priority="51"
name="list table 6 colorful accent 2"/>
<w:lsdexception locked="false" priority="52"
name="list table 7 colorful accent 2"/>
<w:lsdexception locked="false" priority="46"
name="list table 1 light accent 3"/>
<w:lsdexception locked="false" priority="47" name="list table 2 accent 3"/>
<w:lsdexception locked="false" priority="48" name="list table 3 accent 3"/>
<w:lsdexception locked="false" priority="49" name="list table 4 accent 3"/>
<w:lsdexception locked="false" priority="50" name="list table 5 dark accent 3"/>
<w:lsdexception locked="false" priority="51"
name="list table 6 colorful accent 3"/>
<w:lsdexception locked="false" priority="52"
name="list table 7 colorful accent 3"/>
<w:lsdexception locked="false" priority="46"
name="list table 1 light accent 4"/>
<w:lsdexception locked="false" priority="47" name="list table 2 accent 4"/>
<w:lsdexception locked="false" priority="48" name="list table 3 accent 4"/>
<w:lsdexception locked="false" priority="49" name="list table 4 accent 4"/>
<w:lsdexception locked="false" priority="50" name="list table 5 dark accent 4"/>
<w:lsdexception locked="false" priority="51"
name="list table 6 colorful accent 4"/>
<w:lsdexception locked="false" priority="52"
name="list table 7 colorful accent 4"/>
<w:lsdexception locked="false" priority="46"
name="list table 1 light accent 5"/>
<w:lsdexception locked="false" priority="47" name="list table 2 accent 5"/>
<w:lsdexception locked="false" priority="48" name="list table 3 accent 5"/>
<w:lsdexception locked="false" priority="49" name="list table 4 accent 5"/>
<w:lsdexception locked="false" priority="50" name="list table 5 dark accent 5"/>
<w:lsdexception locked="false" priority="51"
name="list table 6 colorful accent 5"/>
<w:lsdexception locked="false" priority="52"
name="list table 7 colorful accent 5"/>
<w:lsdexception locked="false" priority="46"
name="list table 1 light accent 6"/>
<w:lsdexception locked="false" priority="47" name="list table 2 accent 6"/>
<w:lsdexception locked="false" priority="48" name="list table 3 accent 6"/>
<w:lsdexception locked="false" priority="49" name="list table 4 accent 6"/>
<w:lsdexception locked="false" priority="50" name="list table 5 dark accent 6"/>
<w:lsdexception locked="false" priority="51"
name="list table 6 colorful accent 6"/>
<w:lsdexception locked="false" priority="52"
name="list table 7 colorful accent 6"/>
</w:latentstyles>
</xml><![endif]-->
<style>
<!--
/* font definitions */
@font-face
{font-family:�[so;
panose-1:2 1 6 0 3 1 1 1 1 1;
mso-font-alt:simsun;
mso-font-charset:134;
mso-generic-font-family:auto;
mso-font-pitch:variable;
mso-font-signature:3 680460288 22 0 262145 0;}
@font-face
{font-family:ўso;
panose-1:2 1 6 9 6 1 1 1 1 1;
mso-font-alt:simhei;
mso-font-charset:134;
mso-generic-font-family:modern;
mso-font-pitch:fixed;
mso-font-signature:-2147482945 953122042 22 0 262145 0;}
@font-face
{font-family:"cambria math";
panose-1:2 4 5 3 5 4 6 3 2 4;
mso-font-charset:0;
mso-generic-font-family:roman;
mso-font-pitch:variable;
mso-font-signature:-536869121 1107305727 33554432 0 415 0;}
@font-face
{font-family:i{�~;
panose-1:2 1 6 0 3 1 1 1 1 1;
mso-font-alt:dengxian;
mso-font-charset:134;
mso-generic-font-family:auto;
mso-font-pitch:variable;
mso-font-signature:-1610612033 953122042 22 0 262159 0;}
@font-face
{font-family:"arial unicode ms";
panose-1:2 11 6 4 2 2 2 2 2 4;
mso-font-charset:134;
mso-generic-font-family:swiss;
mso-font-pitch:variable;
mso-font-signature:-134238209 -371195905 63 0 4129279 0;}
@font-face
{font-family:cambria;
panose-1:2 4 5 3 5 4 6 3 2 4;
mso-font-charset:0;
mso-generic-font-family:roman;
mso-font-pitch:variable;
mso-font-signature:-536869121 1107305727 33554432 0 415 0;}
@font-face
{font-family:verdana;
panose-1:2 11 6 4 3 5 4 4 2 4;
mso-font-charset:0;
mso-generic-font-family:swiss;
mso-font-pitch:variable;
mso-font-signature:-1610610945 1073750107 16 0 415 0;}
@font-face
{font-family:�n�[_gb2312;
panose-1:2 1 6 9 3 1 1 1 1 1;
mso-font-charset:134;
mso-generic-font-family:modern;
mso-font-pitch:fixed;
mso-font-signature:1 135135232 16 0 262144 0;}
@font-face
{font-family:calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;
mso-font-charset:0;
mso-generic-font-family:swiss;
mso-font-pitch:variable;
mso-font-signature:-536859905 -1073732485 9 0 511 0;}
@font-face
{font-family:cmbx9;
mso-font-alt:cambria;
mso-font-charset:0;
mso-generic-font-family:roman;
mso-font-pitch:auto;
mso-font-signature:0 0 0 0 0 0;}
@font-face
{font-family:"\@�[so";
panose-1:2 1 6 0 3 1 1 1 1 1;
mso-font-charset:134;
mso-generic-font-family:auto;
mso-font-pitch:variable;
mso-font-signature:3 680460288 22 0 262145 0;}
@font-face
{font-family:"\@i{�~";
panose-1:2 1 6 0 3 1 1 1 1 1;
mso-font-charset:134;
mso-generic-font-family:auto;
mso-font-pitch:variable;
mso-font-signature:-1610612033 953122042 22 0 262159 0;}
@font-face
{font-family:"\@ўso";
panose-1:2 1 6 0 3 1 1 1 1 1;
mso-font-charset:134;
mso-generic-font-family:modern;
mso-font-pitch:fixed;
mso-font-signature:-2147482945 953122042 22 0 262145 0;}
@font-face
{font-family:"\@�n�[_gb2312";
mso-font-charset:134;
mso-generic-font-family:modern;
mso-font-pitch:fixed;
mso-font-signature:1 135135232 16 0 262144 0;}
@font-face
{font-family:"\@arial unicode ms";
panose-1:2 11 6 4 2 2 2 2 2 4;
mso-font-charset:134;
mso-generic-font-family:swiss;
mso-font-pitch:variable;
mso-font-signature:-134238209 -371195905 63 0 4129279 0;}
/* style definitions */
p.msonormal, li.msonormal, div.msonormal
{mso-style-unhide:no;
mso-style-qformat:yes;
mso-style-parent:"";
margin:0cm;
margin-bottom:.0001pt;
text-align:justify;
text-justify:inter-ideograph;
mso-pagination:none;
font-size:10.5pt;
mso-bidi-font-size:11.0pt;
font-family:i{�~;
mso-ascii-font-family:i{�~;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:i{�~;
mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:i{�~;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"times new roman";
mso-bidi-theme-font:minor-bidi;
mso-font-kerning:1.0pt;}
h1
{
mso-style-priority: 9;
mso-style-unhide: no;
mso-style-qformat: yes;
mso-style-link: "h�� 1 w[&{";
mso-style-next: ck�e;
margin-top: 17.0pt;
margin-right: 0cm;
margin-bottom: 16.5pt;
margin-left: 0cm;
text-align: justify;
text-justify: inter-ideograph;
line-height: 240%;
mso-pagination: lines-together;
page-break-after: avoid;
mso-outline-level: 1;
font-size: 22pt;
font-family: i{�~;
mso-ascii-font-family: i{�~;
mso-ascii-theme-font: minor-latin;
mso-fareast-font-family: i{�~;
mso-fareast-theme-font: minor-fareast;
mso-hansi-font-family: i{�~;
mso-hansi-theme-font: minor-latin;
mso-bidi-font-family: "times new roman";
mso-bidi-theme-font: minor-bidi;
mso-font-kerning: 22.0pt;
font-weight: bold;
}
h2
{
mso-style-noshow: yes;
mso-style-priority: 9;
mso-style-qformat: yes;
mso-style-link: "h�� 2 w[&{";
mso-style-next: ck�e;
margin-top: 13.0pt;
margin-right: 0cm;
margin-bottom: 13.0pt;
margin-left: 0cm;
text-align: justify;
text-justify: inter-ideograph;
line-height: 170%;
mso-pagination: lines-together;
page-break-after: avoid;
mso-outline-level: 2;
font-size: 16pt;
font-family: "i{�~ light";
mso-ascii-font-family: "i{�~ light";
mso-ascii-theme-font: major-latin;
mso-fareast-font-family: "i{�~ light";
mso-fareast-theme-font: major-fareast;
mso-hansi-font-family: "i{�~ light";
mso-hansi-theme-font: major-latin;
mso-bidi-font-family: "times new roman";
mso-bidi-theme-font: major-bidi;
mso-font-kerning: 1.0pt;
font-weight: bold;
}
h3
{
mso-style-noshow: yes;
mso-style-priority: 9;
mso-style-qformat: yes;
mso-style-link: "h�� 3 w[&{";
mso-style-next: ck�e;
margin-top: 13.0pt;
margin-right: 0cm;
margin-bottom: 13.0pt;
margin-left: 0cm;
text-align: justify;
text-justify: inter-ideograph;
line-height: 170%;
mso-pagination: lines-together;
page-break-after: avoid;
mso-outline-level: 3;
font-size: 16pt;
font-family: i{�~;
mso-ascii-font-family: i{�~;
mso-ascii-theme-font: minor-latin;
mso-fareast-font-family: i{�~;
mso-fareast-theme-font: minor-fareast;
mso-hansi-font-family: i{�~;
mso-hansi-theme-font: minor-latin;
mso-bidi-font-family: "times new roman";
mso-bidi-theme-font: minor-bidi;
mso-font-kerning: 1.0pt;
font-weight: bold;
}
h4
{
mso-style-noshow: yes;
mso-style-qformat: yes;
mso-style-link: "h�� 4 w[&{1";
mso-style-next: ck�e;
margin-top: 14.0pt;
margin-right: 0cm;
margin-bottom: 14.5pt;
margin-left: 0cm;
text-align: justify;
text-justify: inter-ideograph;
line-height: 155%;
mso-pagination: lines-together;
page-break-after: avoid;
mso-outline-level: 4;
font-size: 14pt;
font-family: "cambria",serif;
mso-fareast-font-family: �[so;
mso-bidi-font-family: "times new roman";
mso-font-kerning: 1.0pt;
font-weight: bold;
}
h6
{
mso-style-noshow: yes;
mso-style-priority: 9;
mso-style-qformat: yes;
mso-style-link: "h�� 6 w[&{";
mso-style-next: ck�e;
margin-top: 12.0pt;
margin-right: 0cm;
margin-bottom: 3.2pt;
margin-left: 0cm;
text-align: justify;
text-justify: inter-ideograph;
line-height: 130%;
mso-pagination: lines-together;
page-break-after: avoid;
mso-outline-level: 6;
font-size: 12pt;
font-family: "i{�~ light";
mso-ascii-font-family: "i{�~ light";
mso-ascii-theme-font: major-latin;
mso-fareast-font-family: "i{�~ light";
mso-fareast-theme-font: major-fareast;
mso-hansi-font-family: "i{�~ light";
mso-hansi-theme-font: major-latin;
mso-bidi-font-family: "times new roman";
mso-bidi-theme-font: major-bidi;
mso-font-kerning: 1.0pt;
font-weight: bold;
}
p.msotoc1, li.msotoc1, div.msotoc1
{mso-style-update:auto;
mso-style-noshow:yes;
mso-style-priority:39;
mso-style-next:ck�e;
margin:0cm;
margin-bottom:.0001pt;
text-align:justify;
text-justify:inter-ideograph;
mso-pagination:none;
font-size:10.5pt;
mso-bidi-font-size:11.0pt;
font-family:i{�~;
mso-ascii-font-family:i{�~;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:i{�~;
mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:i{�~;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"times new roman";
mso-bidi-theme-font:minor-bidi;
mso-font-kerning:1.0pt;}
p.msotoc2, li.msotoc2, div.msotoc2
{mso-style-update:auto;
mso-style-noshow:yes;
mso-style-priority:39;
mso-style-next:ck�e;
margin-top:0cm;
margin-right:0cm;
margin-bottom:0cm;
margin-left:21.0pt;
margin-bottom:.0001pt;
mso-para-margin-top:0cm;
mso-para-margin-right:0cm;
mso-para-margin-bottom:0cm;
mso-para-margin-left:2.0gd;
mso-para-margin-bottom:.0001pt;
text-align:justify;
text-justify:inter-ideograph;
mso-pagination:none;
font-size:10.5pt;
mso-bidi-font-size:11.0pt;
font-family:i{�~;
mso-ascii-font-family:i{�~;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:i{�~;
mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:i{�~;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"times new roman";
mso-bidi-theme-font:minor-bidi;
mso-font-kerning:1.0pt;}
p.msotoc3, li.msotoc3, div.msotoc3
{mso-style-update:auto;
mso-style-noshow:yes;
mso-style-priority:39;
mso-style-next:ck�e;
margin-top:0cm;
margin-right:0cm;
margin-bottom:0cm;
margin-left:42.0pt;
margin-bottom:.0001pt;
mso-para-margin-top:0cm;
mso-para-margin-right:0cm;
mso-para-margin-bottom:0cm;
mso-para-margin-left:4.0gd;
mso-para-margin-bottom:.0001pt;
text-align:justify;
text-justify:inter-ideograph;
mso-pagination:none;
font-size:10.5pt;
mso-bidi-font-size:11.0pt;
font-family:i{�~;
mso-ascii-font-family:i{�~;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:i{�~;
mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:i{�~;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"times new roman";
mso-bidi-theme-font:minor-bidi;
mso-font-kerning:1.0pt;}
p.msonormalindent, li.msonormalindent, div.msonormalindent
{mso-style-name:"ck�e)ۏ\,ck�e���l�)ۏ$nw[ �";
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-qformat:yes;
margin:0cm;
margin-bottom:.0001pt;
text-align:justify;
text-justify:inter-ideograph;
text-indent:21.0pt;
line-height:20.0pt;
mso-line-height-rule:exactly;
mso-pagination:none;
font-size:12.0pt;
mso-bidi-font-size:10.0pt;
font-family:�[so;
mso-hansi-font-family:"times new roman";
mso-bidi-font-family:"times new roman";
mso-font-kerning:1.0pt;}
p.msocommenttext, li.msocommenttext, div.msocommenttext
{mso-style-noshow:yes;
mso-style-priority:99;
mso-style-link:"yb�l�ew[ w[&{";
margin:0cm;
margin-bottom:.0001pt;
mso-pagination:none;
font-size:10.5pt;
mso-bidi-font-size:11.0pt;
font-family:i{�~;
mso-ascii-font-family:i{�~;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:i{�~;
mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:i{�~;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"times new roman";
mso-bidi-theme-font:minor-bidi;
mso-font-kerning:1.0pt;}
p.msoheader, li.msoheader, div.msoheader
{mso-style-priority:99;
mso-style-link:"u� w w[&{";
margin:0cm;
margin-bottom:.0001pt;
text-align:center;
mso-pagination:none;
tab-stops:center 207.65pt right 415.3pt;
layout-grid-mode:char;
border:none;
mso-border-bottom-alt:solid windowtext .75pt;
padding:0cm;
mso-padding-alt:0cm 0cm 1.0pt 0cm;
font-size:9.0pt;
font-family:i{�~;
mso-ascii-font-family:i{�~;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:i{�~;
mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:i{�~;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"times new roman";
mso-bidi-theme-font:minor-bidi;
mso-font-kerning:1.0pt;}
p.msofooter, li.msofooter, div.msofooter
{mso-style-priority:99;
mso-style-qformat:yes;
mso-style-link:"u�� w[&{";
margin:0cm;
margin-bottom:.0001pt;
mso-pagination:none;
tab-stops:center 207.65pt right 415.3pt;
layout-grid-mode:char;
font-size:9.0pt;
font-family:i{�~;
mso-ascii-font-family:i{�~;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:i{�~;
mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:i{�~;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"times new roman";
mso-bidi-theme-font:minor-bidi;
mso-font-kerning:1.0pt;}
p.msocaption, li.msocaption, div.msocaption
{mso-style-noshow:yes;
mso-style-priority:35;
mso-style-qformat:yes;
mso-style-next:ck�e;
margin:0cm;
margin-bottom:.0001pt;
text-align:justify;
text-justify:inter-ideograph;
mso-pagination:none;
font-size:10.0pt;
font-family:"i{�~ light";
mso-ascii-font-family:"i{�~ light";
mso-ascii-theme-font:major-latin;
mso-fareast-font-family:ўso;
mso-hansi-font-family:"i{�~ light";
mso-hansi-theme-font:major-latin;
mso-bidi-font-family:"times new roman";
mso-bidi-theme-font:major-bidi;
mso-font-kerning:1.0pt;}
span.msocommentreference
{mso-style-noshow:yes;
mso-style-priority:99;
mso-ansi-font-size:10.5pt;
mso-bidi-font-size:10.5pt;}
p.msotitle, li.msotitle, div.msotitle
{mso-style-noshow:yes;
mso-style-priority:99;
mso-style-unhide:no;
mso-style-qformat:yes;
mso-style-link:"h�� w[&{1";
margin:0cm;
margin-bottom:.0001pt;
text-align:center;
line-height:15.6pt;
mso-pagination:none;
mso-layout-grid-align:none;
font-size:14.0pt;
mso-bidi-font-size:10.0pt;
font-family:"times new roman",serif;
mso-fareast-font-family:�[so;
font-weight:bold;
mso-bidi-font-weight:normal;}
p.msobodytext, li.msobodytext, div.msobodytext
{mso-style-noshow:yes;
mso-style-priority:99;
mso-style-link:"ck�e�e,g w[&{";
margin-top:0cm;
margin-right:0cm;
margin-bottom:6.0pt;
margin-left:0cm;
text-align:justify;
text-justify:inter-ideograph;
mso-pagination:none;
font-size:10.5pt;
mso-bidi-font-size:11.0pt;
font-family:i{�~;
mso-ascii-font-family:i{�~;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:i{�~;
mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:i{�~;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"times new roman";
mso-bidi-theme-font:minor-bidi;
mso-font-kerning:1.0pt;}
p.msodate, li.msodate, div.msodate
{mso-style-noshow:yes;
mso-style-priority:99;
mso-style-link:"�eg w[&{";
mso-style-next:ck�e;
margin-top:0cm;
margin-right:0cm;
margin-bottom:0cm;
margin-left:5.0pt;
margin-bottom:.0001pt;
mso-para-margin-top:0cm;
mso-para-margin-right:0cm;
mso-para-margin-bottom:0cm;
mso-para-margin-left:25.0gd;
mso-para-margin-bottom:.0001pt;
text-align:justify;
text-justify:inter-ideograph;
mso-pagination:none;
font-size:10.5pt;
mso-bidi-font-size:11.0pt;
font-family:i{�~;
mso-ascii-font-family:i{�~;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:i{�~;
mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:i{�~;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"times new roman";
mso-bidi-theme-font:minor-bidi;
mso-font-kerning:1.0pt;}
p.msobodytext3, li.msobodytext3, div.msobodytext3
{mso-style-noshow:yes;
mso-style-priority:99;
mso-style-link:"ck�e�e,g 3 w[&{";
margin:0cm;
margin-bottom:.0001pt;
text-align:center;
mso-pagination:none;
font-size:9.0pt;
mso-bidi-font-size:10.0pt;
font-family:"times new roman",serif;
mso-fareast-font-family:�[so;
mso-font-kerning:1.0pt;}
a:link, span.msohyperlink
{mso-style-noshow:yes;
mso-style-priority:99;
mso-style-qformat:yes;
color:#0563c1;
mso-themecolor:hyperlink;
text-decoration:underline;
text-underline:single;}
a:visited, span.msohyperlinkfollowed
{mso-style-noshow:yes;
mso-style-priority:99;
color:#954f72;
mso-themecolor:followedhyperlink;
text-decoration:underline;
text-underline:single;}
p.msoplaintext, li.msoplaintext, div.msoplaintext
{mso-style-name:"�~�e,g\,nf��ew[";
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-qformat:yes;
mso-style-link:"�~�e,g w[&{1\,nf��ew[ w[&{";
margin:0cm;
margin-bottom:.0001pt;
text-align:justify;
text-justify:inter-ideograph;
mso-pagination:none;
font-size:10.5pt;
mso-bidi-font-size:10.0pt;
font-family:�[so;
mso-hansi-font-family:"courier new";
mso-bidi-font-family:"times new roman";
mso-font-kerning:1.0pt;}
p
{mso-style-noshow:yes;
mso-style-priority:99;
mso-margin-top-alt:auto;
margin-right:0cm;
mso-margin-bottom-alt:auto;
margin-left:0cm;
mso-pagination:widow-orphan;
font-size:12.0pt;
font-family:�[so;
mso-bidi-font-family:�[so;}
pre
{mso-style-noshow:yes;
mso-style-priority:99;
mso-style-link:"html ����
</style>
<!--[if gte mso 10]>
<style>
/* style definitions */
table.msonormaltable
{mso-style-name:nf�h�
<![endif]--><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="2049"/>
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1"/>
</o:shapelayout></xml><![endif]-->
</head>
<body lang=zh-cn link="#0563c1" vlink="#954f72" style='tab-interval:21.0pt'>
<div class=wordsection1>
<p class=msonormal align=center style='text-align:center;mso-pagination:widow-orphan'><span
lang=en-us style='font-size:12.0pt;font-family:�[so;mso-bidi-font-family:�[so;
mso-font-kerning:0pt;mso-no-proof:yes'><img width=998 height=125
id="_x0000_i1025" src="../nlpr.jpg"></span><span lang=en-us style='font-size:
12.0pt;font-family:�[so;mso-bidi-font-family:�[so;mso-font-kerning:0pt'><o:p></o:p></span></p>
<div align=center>
<table class=msonormaltable border=1 cellspacing=0 cellpadding=0 width=1117
style='width:838.0pt;border-collapse:collapse;border:none;mso-border-alt:solid windowtext .5pt;
mso-yfti-tbllook:1184;mso-padding-alt:0cm 0cm 0cm 0cm'>
<colgroup><col width="1117" style="width: 838pt"></colgroup>
<tr style='mso-yfti-irow:0;mso-yfti-firstrow:yes;height:15.0pt'>
<td width=1117 style='width:838.0pt;border:solid windowtext 1.0pt;border-bottom:
none;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt;
mso-border-right-alt:solid windowtext .5pt;padding:.75pt .75pt 0cm .75pt;
height:15.0pt'>
<p class=msonormal align=center style='text-align:center;mso-pagination:widow-orphan'><b><span
lang=en-us style='font-size:12.0pt;font-family:"times new roman",serif;
mso-fareast-font-family:�[so;color:black;mso-font-kerning:0pt'>2020</span></b><b><span
style='font-size:12.0pt;font-family:�[so;mso-bidi-font-family:"times new roman";
color:black;mso-font-kerning:0pt'>���e�vu_</span></b><b><span lang=en-us
style='font-size:12.0pt;font-family:"times new roman",serif;mso-fareast-font-family:
�[so;color:black;mso-font-kerning:0pt'> <o:p></o:p></span></b></p>
</td>
</tr>
<tr style='mso-yfti-irow:1;height:15.0pt'>
<td width=1117 style='width:838.0pt;border-top:none;border-left:solid windowtext 1.0pt;
border-bottom:none;border-right:solid windowtext 1.0pt;mso-border-left-alt:
solid windowtext .5pt;mso-border-right-alt:solid windowtext .5pt;padding:
.75pt .75pt 0cm .75pt;height:15.0pt'>
<p class=msonormal align=center style='text-align:center;mso-pagination:widow-orphan'><b><span
lang=en-us style='font-size:12.0pt;font-family:"times new roman",serif;
mso-fareast-font-family:�[so;color:black;mso-font-kerning:0pt'> list of
publications<o:p></o:p></span></b></p>
</td>
</tr>
<tr style='mso-yfti-irow:2;mso-yfti-lastrow:yes;height:15.0pt'>
<td width=1117 style='width:838.0pt;border:solid windowtext 1.0pt;border-top:
none;mso-border-left-alt:solid windowtext .5pt;mso-border-bottom-alt:solid windowtext .5pt;
mso-border-right-alt:solid windowtext .5pt;padding:.75pt .75pt 0cm .75pt;
height:15.0pt'>
<p class=af0 style='mso-outline-level:2'><span lang=en-us style='font-size:
12.0pt;line-height:110%;mso-bidi-font-family:"times new roman";color:black;
mso-font-kerning:0pt'> </span><a name="_toc66800735"></a><a
name="_toc24098141"></a><a name="_toc532562225"></a><a name="_toc532391194"><span
style='mso-bookmark:_toc532562225'><span style='mso-bookmark:_toc24098141'><span
style='mso-bookmark:_toc66800735'><b style='mso-bidi-font-weight:normal'><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�n �w�</span></b></span></span></span></a><a
name="_toc24465890"></a><span style='mso-bookmark:_toc24465890'><span
style='mso-bookmark:_toc66800735'><b style='mso-bidi-font-weight:normal'><span
lang=en-us style='font-size:12.0pt;line-height:110%'>books / chapters</span></b></span></span><b
style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt;
line-height:110%'><o:p></o:p></span></b></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l0 level1 lfo2'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>jun wan, guodong guo, sergio escalera, hugo jair escalante,
stan z. li (eds.), multi-modal face presentation attack detection, synthesis
lectures on computer vision, isbn:9781681739229, morgan & claypool
publishers, 2020.<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l0 level1 lfo2'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>2.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>thomas moeslund, sergio escalera, gholamreza anbarjafari,
kamal nasrollahi, jun wan (eds.), statistical machine learning for
human behaviour analysis, isbn:978-3-03936-228-8, mdpi, 2020.<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l0 level1 lfo2'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>3.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yi li, huaibo huang, ran he, tieniu tan, heterogeneous facial
analysis and synthesis, isbn: 978-981-13-9148-4, springer, 2020<o:p></o:p></span></p>
<p class=af0><b><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></b></p>
<p class=af0 style='mso-outline-level:2'><a name="_toc66800736"></a><a
name="_toc24098142"></a><a name="_toc532562227"></a><a name="_toc532391196"><span
style='mso-bookmark:_toc532562227'><span style='mso-bookmark:_toc24098142'><span
style='mso-bookmark:_toc66800736'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�ve�
rir</span></b></span></span></span></a><a
name="_toc24465891"></a><a name="_toc24360999"></a><a name="_toc532562397"></a><span
style='mso-bookmark:_toc532562397'><span style='mso-bookmark:_toc24360999'><span
style='mso-bookmark:_toc24465891'><span style='mso-bookmark:_toc66800736'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>international journals</span></b></span></span></span></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800737"></a><a
name="_toc24098143"></a><a name="_toc532562228"></a><a name="_toc532391197"><span
style='mso-bookmark:_toc532562228'><span style='mso-bookmark:_toc24098143'><span
style='mso-bookmark:_toc66800737'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>���{:gɖɉ</span></b></span></span></span></a><a
name="_toc24465892"></a><a name="_toc24361000"></a><a name="_toc532562398"></a><span
style='mso-bookmark:_toc532562398'><span style='mso-bookmark:_toc24361000'><span
style='mso-bookmark:_toc24465892'><span style='mso-bookmark:_toc66800737'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>computer vision</span></b></span></span></span></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>ruijin chen, wei gao. color-guided depth map
super-resolution using a dual-branch multi-scale residual network with
channel interaction. sensors, 20(6), 1560, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>2.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>wei wang, wei gao, hainan cui, zhanyi hu. reconstruction of
lines and planes of urban buildings with angle regularization. isprs journal
of photogrammetry and remote sensing, 165, pp 54-66, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>3.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>q. dong*, b. liu and z. hu. non-uniqueness phenomenon of
object representation in modelling it cortex by deep convolutional neural
network (dcnn). frontiers in computational neuroscience, 14:35, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>4.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>l. chang, l. jin, l. weng, w. chao, x. wang, x. deng, and
q. dong*. face-sketch learning with human sketch-drawing order enforcement.
science china information sciences, 63, 219103:1 219103:3, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>5.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>hainan cui, tianxin shi, jun zhang, pengfei xu, yiping
meng, shuhan shen. view-graph construction framework for robust and efficient
structure-from-motion. pattern recognition, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>6.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yu chen, shuhan shen, yisong chen, guoping wang.
graph-based parallel large scale structure from motion. pattern recognition,
107: 107537, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>7.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>hongmin liu, xincheng tang, shuhan shen. depth-map completion
for large indoor scene reconstruction. pattern recognition, 99: 107112, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>8.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>lingjie zhu, shuhan shen, xiang gao, zhanyi hu. urban scene
vectorized modeling based on contour deformation. isprs international journal
of geo-information, 9(3), 162, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>9.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xiang gao, shuhan shen, lingjie zhu, tianxin shi, zhiheng
wang, and zhanyi hu. complete scene reconstruction by merging images and
laser scans. ieee transactions on circuits and systems for video technology,
30(10): 3688-3701, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>10.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>fulin tang, yihong wu, xiaohui hou, haibin ling. 3d mapping
and 6d pose computation for real time augmented reality on cylindrical
objects. ieee transactions on circuits and systems for video technology, vol.
30, issue 9, pp. 2887-2899, 2020. <o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>11.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>shan zhang, xiaoshan yang, yanxia liu, changsheng xu,
asymmetric multi-stage cnns for small-scale pedestrian detection.
neurocomputing, vol. 409, pp. 12-26, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>12.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yuyang zhang, shibiao xu, baoyuan wu, jian shi, weiliang
meng and xiaopeng zhang. unsupervised multi-view constrained convolutional
network for accurate depth estimation. ieee transactions on image processing.
2020, 29: 7019-7031.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>13.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>wei ma, chaofan gong, shibiao xu, xiaopeng zhang:
multi-scale spatial context-based semantic edge detection. inf. fusion 64:
238-251 (2020)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>14.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>wei ma, mana zheng, wenguang ma, shibiao xu, xiaopeng
zhang: learning across views for stereo image completion. iet comput. vis.
14(7): 482-492 (2020)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>15.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yong zhao, yuqi cheng, xishan zhang, shibiao xu, shuhui bu,
hongkai jiang, pengcheng han, ke li, gang wan: real-time orthophoto mosaicing
on mobile devices for sequential aerial images with low overlap. remote.
sens. 12(22): 3739 (2020)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>16.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>jianbo liu, ying wang, yongcheng liu, shiming xiang and
chunhong pan. 3d posturenet: a unified framework for skeleton-based posture
recognition, pattern recognition letters, vol. 140, pp 143-149, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>17.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xiyan liu, gaofeng meng, bin fan, shiming xiang, chunhong
pan. geometric rectification of document images using adversarial gated
unwarping network, pattern recognition, vol. 108, pp. 107576, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>18.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>jin gao, qiang wang, junliang xing, haibin ling, weiming
hu, and stephen maybank tracking-by-fusion via gaussian process regression
extended to transfer learning, ieee transactions on pattern analysis and
machine intelligence (pami), vol. 42, no. 4, pp. 939-955, april 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>19.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>weiming hu, xinchu shi, zongwei zhou, junliang xing, haibin
ling, and stephen maybank, dual l1-normalized context aware tensor power
iteration and its applications to multi-object tracking and multi-graph
matching, international journal of computer vision (ijcv), vol. 128, no. 2,
pp. 360-392, february 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>20.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>weiming hu, jun gao, bing li, ou wu, junping du, and
stephen maybank, anomaly detection using local kernel density estimation and
context-based regression, ieee transactions on knowledge and data
engineering (kde), vol. 32, no. 2, pp. 218-233, february 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>21.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xinwei huang, bing li, shuai li, wenjuan li, weihua xiong,
xuanwu yin, weiming hu, and hong qin, multi-cue semi-supervised color
constancy with limited training samples, ieee transactions on image
processing (tip), vol. 29, pp. 7875-7888, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>22.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>wenjuan li, bing li, chunfeng yuan, haohao wu, yangxi li,
weiming hu, and fangshi wang, anisotropic convolution for image
classi�cation, ieee transactions on image processing (tip), vol. 29, no. 1,
pp. 5584-5595, december 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>23.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>hao yang, chunfeng yuan, li zhang, yunda sun, weiming hu,
stephen j. maybank, sta-cnn: convolutional spatial-temporal attention
learning for action recognition, ieee transactions on image processing
(tip), vol. 29, no. 1, pp. 5783-5793, december 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>24.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>guan luo, jiutong wei, weiming hu, and stephen j. maybank,
tangent fisher vector on matrix manifolds for action recognition, ieee
transactions on image processing (tip), vol. 29, no. 1, pp. 3052-3064, 2020.<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>25.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>songyan liu, haiyun guo, jian-guo hu, xu zhao, chaoyang
zhao, tong wang, yousong zhu, jinqiao wang, ming tang: a novel data
augmentation scheme for pedestrian detection with attribute preserving gan.
neurocomputing 401: 123-132 ,2020<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>26.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xiang wu, ran he, yibo hu, zhenan sun, learning an
evolutionary embedding via massive knowledge distillation, international
journal of computer vision, vol. 128, no. 8-9, pp. 2089-2106, 2020.<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>27.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yi li, huaibo huang, jie cao, ran he, tieniu tan,
disentangled representation learning of makeup portraits in the wild,
international journal of computer vision, vol. 128, no. 8-9, pp. 2166-2184,
2020.<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>28.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>qi li, zhenan sun, ran he, tieniu tan, a general framework
for deep supervised discrete hashing, international journal of computer
vision, vol. 128, no. 8-9, pp. 2204-2222, 2020.<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>29.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xin zheng, yanqing guo, huaibo huang, yi li, ran he, a
survey of deep facial attribute analysis, international journal of computer
vision, vol. 128, no. 8-9, pp. 2002-2034, 2020.<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>30.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>jie cao, yibo hu, hongwen zhang, ran he, zhenan sun,
towards high fidelity face frontalization in the wild, international
journal of computer vision, vol. 128, no. 5, pp. 1485-1504, 2020.<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>31.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>wei xue, hong ai, tianyu sun, chunfeng song, yan huang,
liang wang, frame-gan: increasing the frame rate of gait videos with
generative adversarial networks, neurocomputing, vol. 380, pp. 95-104, 2020.<o:p></o:p></span></p>
<p class=af0><b style='mso-bidi-font-weight:normal'><span lang=en-us
style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></b></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800738"></a><a
name="_toc24098144"></a><a name="_toc532562229"></a><a name="_toc532391198"><span
style='mso-bookmark:_toc532562229'><span style='mso-bookmark:_toc24098144'><span
style='mso-bookmark:_toc66800738'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�va�</span></b></span></span></span></a><span
style='mso-bookmark:_toc532391198'><span style='mso-bookmark:_toc532562229'><span
style='mso-bookmark:_toc24098144'><span style='mso-bookmark:_toc66800738'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>/</span></b></span></span></span></span><span
style='mso-bookmark:_toc532391198'><span style='mso-bookmark:_toc532562229'><span
style='mso-bookmark:_toc24098144'><span style='mso-bookmark:_toc66800738'><b><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>ɖ��ytnr�g</span></b></span></span></span></span><a
name="_toc24465893"></a><a name="_toc24361001"></a><a name="_toc532562399"></a><span
style='mso-bookmark:_toc532562399'><span style='mso-bookmark:_toc24361001'><span
style='mso-bookmark:_toc24465893'><span style='mso-bookmark:_toc66800738'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>image/video processing </span></b></span></span></span></span><span
style='mso-bookmark:_toc24465893'><span style='mso-bookmark:_toc66800738'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>and analysis</span></b></span></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>32.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xingjia pan, fan tang, weiming dong, yang gu, zhichao song,
yiping meng, pengfei xu, oilver deussen, changsheng xu: self-supervised
feature augmentation for large image object detection. ieee transactions on
image processing 29: 6745-6758 ,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>33.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>feifei zhang, tianzhu zhang, qirong mao, changsheng xu,
geometry guided pose-invariant facial expression recognition . ieee trans.
image process. 29: 4445-4460 ,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>34.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>feifei zhang, tianzhu zhang, qirong mao, changsheng xu, a
unified deep model for joint facial expression recognition, face synthesis,
and face alignment . ieee trans. image process. 29: 6574-6589 ,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>35.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>lei shi, yifan zhang, jian cheng, hanqing lu.
skeleton-based action recognition with multi-stream adaptive graph
convolutional networks. ieee transactions on image processing (tip), vol.29,
pp.9532-9545, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>36.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>chunjie zhang, jian cheng, qi tian. multi-view image
classification with visual, semantic and view consistency. ieee transactions
on image processing (tip), vol.29, pp.617-627, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>37.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yousong zhu, xu zhao, chaoyang zhao, jinqiao wang, hanqing
lu: food det: detecting foods in refrigerator with supervised transformer
network. neurocomputing 379: 162-171 ,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>38.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>linyu zheng, yingying chen, ming tang, jinqiao wang,
hanqing lu: siamese deformable cross-correlation network for real-time visual
tracking. neurocomputing 401: 36-47 ,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>39.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xiaomei zhang, yingying chen, bingke zhu, jinqiao wang,
ming tang: semantic-spatial fusion network for human parsing. neurocomputing
402: 375-383 ,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>40.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>kai niu, yan huang, wanli ouyang, liang wang, improving
description-based person re-identification by multi-granularity image-text
alignments, ieee trans. on image processing, vol. 29, pp. 5542-5556, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>41.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>jingyu liu, wei wang, liang wang, ming-hsuan yang,
attribute-guided attention for referring expression generation and
comprehension, ieee trans. on image processing, vol. 29, pp. 5244-5258,
2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>42.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>zhen jia, zhang zhang, liang wang, caifeng shan, tieniu
tan, deep unbiased embedding transfer for zero-shot learning, ieee trans.
on image processing, vol. 29, pp. 1958-1971, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>43.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yuqi zhang, yongzhen huang, shiqi yu, liang wang,
cross-view gait recognition by discriminative feature learning, ieee trans.
on image processing, vol. 29, pp. 1001-1015, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>44.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>fei liu, shubo zhou, yunlong wang, guangqi hou, zhenan sun,
tieniu tan, binocular light-field: imaging theory and occlusion-robust depth
perception application, ieee trans. on image processing, vol. 29, pp.
1628-1640, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>45.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yuxi wang, zhaoxiang zhang, wangli hao, chunfeng song,
multi-domain image-to-image translation via a unified circular framework,
ieee trans. on image processing, vol. 30, pp. 670-684, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>46.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yuxi wang, zhaoxiang zhang, wangli hao, chunfeng song,
attention guided multiple source and target domain adaptation, ieee trans.
on image processing, vol. 30, pp. 892-906, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>47.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>wangli hao, ian max andolina, wei wang, zhaoxiang zhang,
biologically inspired visual computing: the state of the art, frontiers of
computer science, vol. 15, no. 1, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>48.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yunlong wang, fei liu, kunbo zhang, zilei wang, zhenan sun,
tieniu tan, high-fidelity view synthesis for light field imaging with
extended pseudo 4dcnn, ieee trans. on computational imaging, vol. 6, pp.
830-842, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>49.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>weining wang, qi li, liang wang, robust object tracking
via information theoretic measures, international journal of automation and
computing, vol. 17, no. 5, pp. 652-666, 2020.<o:p></o:p></span></p>
<p class=af0><b><i><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></i></b></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800739"><b><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�n�]zf��</span></b></a><span
style='mso-bookmark:_toc66800739'><b><span lang=en-us style='font-size:12.0pt;
line-height:110%'>artificial intelligence</span></b></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>50.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>feifei zhao, yi zeng, aike guo, haifeng su, bo xu, a
neural algorithm for drosophila linear and nonlinear decision-making ,
scientific reports, vol.10, pp. 18660, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>51.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>qian zhang, yi zeng and taoyi yang, computational
investigation of contributions from different subtypes of interneurons in
prefrontal cortex for information maintenance </span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>scientific reports, vol.10, pp.
4617, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>52.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>feifei zhao, qingqun kong, yi zeng, bo xu, a
brain-inspired visual fear responses model for uav emergent obstacle
dodging , ieee transactions on cognitive and developmental systems, vol. 12,
no. 1, pp. 124-132, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>53.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>qian liang, yi zeng and bo xu, temporal-sequential
learning with a brain-inspired spiking neural network and its application to
musical memory , frontiers in computational neuroscience, vol. 14, pp. 51,
2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>54.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>bin fan, qingqun kong, xinchao wang, zhiheng wang, shiming
xiang, chunhong pan, and pascal fua. " a brain-inspired model of theory
of mind ", frontiers in neurorobotics, vol. 14, no.60, pp. 1 - 17, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>55.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>dongcheng zhao, yi zeng, tielin zhang, mengting shi, and
feifei zhao, glsnn: a multi-layer spiking neural network based on global
feedback alignment and local stdp plasticity , frontiers in computational
neuroscience, vol. 14, pp. 576841, 2020<o:p></o:p></span></p>
<p class=af0><b><i><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></i></b></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800740"></a><a
name="_toc24098145"></a><a name="_toc532562230"></a><a name="_toc532391199"><span
style='mso-bookmark:_toc532562230'><span style='mso-bookmark:_toc24098145'><span
style='mso-bookmark:_toc66800740'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>!j_ƌ r</span></b></span></span></span></a><a
name="_toc24465894"></a><a name="_toc24361002"></a><a name="_toc532562400"></a><span
style='mso-bookmark:_toc532562400'><span style='mso-bookmark:_toc24361002'><span
style='mso-bookmark:_toc24465894'><span style='mso-bookmark:_toc66800740'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>pattern recognition</span></b></span></span></span></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>56.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xuelin ma,shuang qiu,huiguang he, multi-channel eeg
recording during motor imagery of different joints from the same
limb ,scientific data, 2020. <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>57.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>jiezhen xing,shuang qiu,xuelin ma,chenyao wu,jinpeng
li,shengpei wang,huiguang he, a cnn-based comparing network for the detection
of steady-state visual evoked potential responses, neurocomputing,
vol.403,pp.452-461,2020. <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>58.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>jinpeng li,shuang qiu,changde du,yixin wang,huiguang
he, domain adaptation for eeg emotion recognition based on latent
representation similarity, ieee transactions on cognitive and developmental
systems,vol.12,no.2,pp.344-353,2020. <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>59.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xuelin ma,shuang qiu,wei wei,shengpei wang,huiguang he
, deep channel-correlation network for motor imagery decoding from same limb,
ieee transactions on neural systems and rehabilitation
engineering,vol.28,no.1,pp.297-306,2020. <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>60.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>weize quan, kai wang, dong-ming yan, xiaopeng zhang, dennis
pellerin. learn with diversity and from harder samples: improving the
generalization of cnn-based detection of computer-generated images, forensic
science international digital investigation, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>61.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>ruisong zhang, weize quan, lubin fan, liming hu, dong-ming
yan. distinguishing computer-generated images from natural images using
channel and pixel correlation, journal of computer science and technology,
2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>62.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xiaolong yang, xiaohong jia, mengke yuan, dong-ming yan.
real-time facial pose estimation and tracking by coarse-to-fine iterative
optimization, tsinghua science and technology, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>63.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xiaohan liu, lei ma, jianwei guo, dong-ming yan. parallel
computation of 3d clipped voronoi diagrams. parallel computation of 3d
clipped voronoi diagrams.2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>64.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>parallel computation of 3d clipped voronoi diagrams.
realistic procedural plant modeling from multiple view images.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt'><span lang=en-us style='font-size:
12.0pt;line-height:110%'>ieee transactions on visualization and computer
graphics.2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>65.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yuxin chen, gaoqun ma, chunfeng yuana, bing li, hui zhang,
fangshi wang, and weiming hu, graph convolutional network with structure
pooling and joint-wise channel attention for action recognition, pattern
recognition, vol. 103, pp. 107321: 1-13, july 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>66.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>zongwei zhou, wenhan luo, qiangwang, junliang xing, and
weiming hu, distractor- aware discrimination learning for online multiple
object tracking, pattern recognition, vol. 107, pp. 1-10 ,november 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>67.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>qiang chen, peisong wang, anda cheng, wanguo wang, yifan
zhang, jian cheng. robust one-stage object detection with location-aware
classifiers. pattern recognition (pr), vol.105, september,107334, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>68.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yifan zhang, lei shi, yi wu, ke cheng, jian cheng, hanqing
lu: gesture recognition based on deep deformable 3d convolutional neural
networks. pattern recognit. 107: 107416 ,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>69.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>jun fu, jing liu, yong li, yongjun bao, weipeng yan, zhiwei
fang, hanqing lu: contextual deconvolution network for semantic segmentation.
pattern recognit. 101: 107152 ,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>70.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>wen-hao he, xu-yao zhang, fei yin, zhenbo luo, jean-marc
ogier, cheng-lin liu, real-time multi-scale scene text detection with
scale-based region proposal network, pattern recognition, vol. 98, pp.
107026, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>71.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>chee-kheng ch ng, chee seng chan, cheng-lin liu,
total-text: towards orientation robustness in scene text detection, int. j.
document analysis and recognition, vol. 23, pp. 31-52, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>72.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xu-yao zhang, cheng-lin liu, ching y. suen, towards robust
pattern recognition: a review, proceedings of the ieee, vol. 108(6), pp.
894-922, 2020. <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>73.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>jun-yu ye, yan-ming zhang, qing yang, cheng-lin liu,
contextual stroke classification in online handwritten documents with edge
graph attention networks, sn computer science, vol. 1, pp. 163, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>74.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yunxue shao, cheng-lin liu, teaching machines to write like
humans using l-attributed grammar, engineering applications of artificial
intelligence, vol. 90, pp. 103489, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>75.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>wujiaheimaiti simayi, mayire ibrahim, xu-yao zhang,
cheng-lin liu, askar hamdulla, a benchmark for unconstrained online
handwritten uyghur word recognition, int. j. document analysis and
recognition, vol.23, pp. 205-218, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>76.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>zhuo chen, fei yin, xu-yao zhang, qing yang, cheng-lin liu,
multilingual handwritten text recognition via multi-task learning of
recurrent neural networks, pattern recognition, vol. 108, pp. 107555, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>77.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>jin-wen wu, fei yin, yan-ming zhang, xu-yao zhang,
cheng-lin liu, handwritten mathematical expression recognition via paired
adversarial learning, int. j. computer vision, vol. 128, pp. 2386-2401, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>78.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>ran he, jie cao, lingxiao song, zhenan sun, tieniu tan,
adversarial cross-spectral face completion for nir-vis face recognition,
ieee trans. on pattern analysis and machine intelligence, vol. 42, no. 5, pp.
1025-1037, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>79.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yan huang, qi wu, wei wang, liang wang, image and sentence
matching via semantic concepts and order learning, ieee trans. on pattern
analysis and machine intelligence, vol. 42, no. 3, pp. 636-650, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>80.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>ya jing, junbo wang, wei wang, liang wang, tieniu tan,
relational graph neural network for situation recognition, pattern
recognition, vol. 108, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>81.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>chenyang si, ya jing, wei wang, liang wang, tieniu tan,
skeleton-based action recognition with hierarchical spatial reasoning and
temporal stack learning network, pattern recognition, vol. 107, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>82.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>kai niu, yan huang, liang wang, re-ranking image-text
matching by adaptive metric fusion, pattern recognition, vol. 104, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>83.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>weining wang, yan huang, liang wang, long video question
answering: a matching-guided attention model, pattern recognition, vol. 102,
2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>84.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>peipei li, yibo hu, xiang wu, ran he, zhenan sun, deep label
refinement for age estimation, pattern recognition, vol. 100, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>85.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xin zheng, huaibo huang, yanqing guo, bo wang, ran he,
blan: bi-directional ladder attentive network for facial attribute
prediction, pattern recognition, vol. 100, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>86.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>zhihang li, yibo hu, ran he, zhenan sun, learning
disentangling and fusing networks for face completion under structured
occlusions, pattern recognition, vol. 99, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>87.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>junbo wang, wei wang, liang wang, zhiyong wang, david dagan
feng, tieniu tan, learning visual relationship and context-aware attention
for image captioning, pattern recognition, vol. 98, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>88.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>caiyong wang, yunlong wang, yunfan liu, zhaofeng he, ran
he, zhenan sun, sclerasegnet: an attention assisted u-net model for accurate
sclera segmentation, ieee trans. on biometrics, behavior, and identity
science (tbiom), vol. 2, no. 1, pp. 40-54, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>89.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>caiyong wang, jawad muhammad, yunlong wang, zhaofeng he,
zhenan sun, towards complete and accurate iris segmentation using deep
multi-task attention network for non-cooperative iris recognition, ieee
trans. on information forensics and security, vol. 15, pp. 2944-2959, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>90.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yunlian sun, jinhui tang, zhenan sun, massimo tistarelli,
facial age and expression synthesis using ordinal ranking adversarial networks,
ieee trans. on information forensics and security, vol. 15, pp. 2960-2972,
2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>91.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yunlian sun, jinhui tang, xiangbo shu, zhenan sun, massimo
tistarelli, facial age synthesis with label distribution-guided generative
adversarial network, ieee trans. on information forensics and security, vol.
15, pp. 2679-2691, 2020.<o:p></o:p></span></p>
<p class=af0><b style='mso-bidi-font-weight:normal'><i><span lang=en-us
style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></i></b></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800741"></a><a
name="_toc24098146"></a><a name="_toc532562231"></a><a name="_toc532391200"><span
style='mso-bookmark:_toc532562231'><span style='mso-bookmark:_toc24098146'><span
style='mso-bookmark:_toc66800741'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>:ghvf[`n</span></b></span></span></span></a><a
name="_toc24465895"></a><a name="_toc24361003"></a><a name="_toc532562401"></a><span
style='mso-bookmark:_toc532562401'><span style='mso-bookmark:_toc24361003'><span
style='mso-bookmark:_toc24465895'><span style='mso-bookmark:_toc66800741'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>machine learning</span></b></span></span></span></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>92.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>jinpeng li,shuang qiu,yuanyuan shen,chenglin liu,huiguang
he, multisource transfer learning for cross-subject eeg emotion recognition,
ieee transactions on cybernetics, vol.50,no.7, pp.3281-3293, 2020. <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>93.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>dan li,changde du,huiguang he, semi-supervised cross-modal
image generation with generative adversarial networks , pattern recognition
,vol.100,pp.107085, 2020. <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>94.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>wenjing l</span><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>shuhao zhang</span><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>ge yang, dynamic organization of
intracellular organelle networks, wiley interdisciplinary reviews-systems
biology and medicine, e1505, 2020. <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>95.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>liangyong yu</span><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>ran li, xiangrui zeng</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>hongyi wang</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jie jin</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>ge yang</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>rui jiang</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>min xu, few shot domain adaptation
for in situ macromolecule structural classification in cryo-electron
tomograms, bioinformatics, btaa671, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>96.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>jing liu, linlin li, yang yang, bei hong, xi chen, qiwei
xie, hua han</span><span style='font-size:12.0pt;line-height:110%;font-family:
�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>automatic reconstruction
of mitochondria and endoplasmic reticulum in electron microscopy volumes by
deep learning. frontiers in neuroscience, 2020 (3</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>:s^�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>top)<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>97.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>jinqiao wang , linyu zheng, ming tang, jiayi feng: a
comparison of correlation filter-based trackers and struck trackers. ieee
trans. circuits syst. video technol. 30(9): 3106-3118 ,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>98.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>guoqiang zhong, tao li, wencong jiao, li-na wang, junyu
dong, cheng-lin liu, dna computing inspired deep networks design,
neurocomputing, vol. 382, pp. 140-147, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>99.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>zhengya sun, cheng-lin liu, jinghao niu, wensheng zhang,
discriminative structure learning of sum-product networks for data stream
classification neural networks, vol. 123, pp. 163-175, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>100.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>yuan-yuan shen, yan-ming zhang,
xu-yao zhang, cheng-lin liu, online semi-supervised learning with learning
vector quantization, neurocomputing, vol. 399, pp. 467-278, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>101.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>yanbo fan, baoyuan wu, ran he,
bao-gang hu, yong zhang, siwei lyu, groupwise ranking loss for multi-label
learning, ieee access, vol. 8, pp. 21717-21727, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>102.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>jufeng yang, xiaoping wu, jie
liang, xiaoxiao sun, ming-ming cheng, paul l. rosin, self-paced balance
learning for clinical skin disease recognition, ieee trans. on neural
networks and learning systems, vol. 31, no. 8, pp. 2832-2846, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>103.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>zhihang li, xu tang, xiang wu,
jingtuo liu, ran he progressively refined face detection through
semantics-enriched representation learning, ieee trans. on information
forensics and security, vol. 15, pp. 1394-1406, 2020.<o:p></o:p></span></p>
<p class=af0><b style='mso-bidi-font-weight:normal'><span lang=en-us
style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></b></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800742"></a><a
name="_toc24098147"></a><a name="_toc532562232"></a><a name="_toc532391201"><span
style='mso-bookmark:_toc532562232'><span style='mso-bookmark:_toc24098147'><span
style='mso-bookmark:_toc66800742'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>pencc�c</span></b></span></span></span></a><a
name="_toc24465896"></a><a name="_toc24361004"></a><a name="_toc532562402"></a><span
style='mso-bookmark:_toc532562402'><span style='mso-bookmark:_toc24361004'><span
style='mso-bookmark:_toc24465896'><span style='mso-bookmark:_toc66800742'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>data mining</span></b></span></span></span></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>104.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>qiang cui, shu wu, qiang liu, wen
zhong, liang wang, mv-rnn: a multi-view recurrent neural network for
sequential recommendation, ieee trans. on knowledge and data engineering,
vol. 32, no. 2, pp. 317-331, 2020.<o:p></o:p></span></p>
<p class=af0><b style='mso-bidi-font-weight:normal'><i><span lang=en-us
style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></i></b></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800743"></a><a
name="_toc24098148"></a><a name="_toc532562233"></a><a name="_toc532391202"><span
style='mso-bookmark:_toc532562233'><span style='mso-bookmark:_toc24098148'><span
style='mso-bookmark:_toc66800743'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>���{:g�vb_f[</span></b></span></span></span></a><a
name="_toc24465897"></a><a name="_toc24361005"></a><a name="_toc532562403"></a><span
style='mso-bookmark:_toc532562403'><span style='mso-bookmark:_toc24361005'><span
style='mso-bookmark:_toc24465897'><span style='mso-bookmark:_toc66800743'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>computer graphics</span></b></span></span></span></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>105.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>jianwei guo, haiyong jiang, bedrich
benes, oliver deussen, xiaopeng zhang, dani lischinski, hui huang. inverse
procedural modeling of branching structures by inferring l-systems. acm
transactions on graphics (present at siggraph 2020), 39, 5, article 155,
2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>106.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>yiqun wang, jing ren, dong-ming
yan, jianwei guo, xiaopeng zhang, and peter wonka. mgcn: descriptor learning
using multiscale gcns. acm trans. graph (proc. siggraph). 39, (4), 2020, 15
pages.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>107.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>.jianwei guo, shibiao xu, dong-ming
yan, zhanglin cheng, marc jaeger, xiaopeng zhang. realistic procedural plant
modeling from multiple view images. ieee transactions on visualization and
computer graphics, vol. 26, no. 2, pp. 1372-1384, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>108.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>zhengda, lu and guo, jianwei and
xiao, jun and wang, ying and zhang, xiaopeng and yan, dong-ming. extracting
cycle-aware feature curve networks from 3d models. computer-aided design,
2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>109.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>jianwei guo, hanyu wang, zhanglin
cheng, xiaopeng zhang, dong-ming yan. learning local shape descriptors for
computing non-rigid dense correspondence [j]. computational visual media, 6,
95-112, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>110.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>lei you, jianwei guo, yong pang,
xinyu song, xiaopeng zhang. 3d stem model construction with geometry
consistency using terrestrial laser scanning data. international journal of
remote sensing, 42:2, 714-737, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>111.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>ruisong zhang, weize quan, baoyuan
wu, zhifeng li, dong-ming yan. pixel wise dense detector for image
inpainting, computer graphics forum (pacific graphics), 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>112.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>hao-xiang guo, xiaohan liu,
dong-ming yan, yang liu. cut-enhanced polycube-maps for feature-aware all-hex
meshing, acm transactions on graphics (proc. of siggraph), 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>113.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>haiyong jiang, dong-ming yan,
xiaopeng zhang, peter wonka. selection expressions for procedural modeling,
ieee transactions on visualization and computer graphics, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>114.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>pengfei wang, shiqing xin, changhe
tu, dong-ming yan, yuanfeng zhou, caiming zhang. robustly computing
restricted voronoi diagrams (rvd) on thin-plate models, computer-aided
geometric design, 2020<o:p></o:p></span></p>
<p class=af0><span lang=en-us style='font-size:12.0pt;line-height:110%;
mso-bidi-font-weight:bold'><o:p> </o:p></span></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800744"></a><a
name="_toc24098149"></a><a name="_toc532562234"></a><a name="_toc532391203"><span
style='mso-bookmark:_toc532562234'><span style='mso-bookmark:_toc24098149'><span
style='mso-bookmark:_toc66800744'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>y�zso���{</span></b></span></span></span></a><a
name="_toc24465898"></a><a name="_toc24361006"></a><a name="_toc532562404"></a><span
style='mso-bookmark:_toc532562404'><span style='mso-bookmark:_toc24361006'><span
style='mso-bookmark:_toc24465898'><span style='mso-bookmark:_toc66800744'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>multimedia computing</span></b></span></span></span></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>115.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>fan tang, weiming dong, yiping
meng, chongyang ma, fuzhang wu, xinrui li, tong-yee lee: image
retargetability. ieee transactions on multimedia 22(3): 641-654 (2020)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>116.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>shaobo min, hantao yao, hongtao
xie, zheng-jun zha, yongdong zhang: multi-objective matrix normalization for
fine-grained visual recognition. ieee trans. image process. 29: 4996-5009
(2020)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>117.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>fan qi, xiaoshan yang, tianzhu
zhang, changsheng xu: discriminative multimodal embedding for event
classification. neurocomputing vol. 395, pp. 160-169, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>118.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>yi huang, xiaoshan yang, junyu gao,
jitao sang, changsheng xu, knowledge-driven egocentric multimodal activity
recognition, acm transactions on multimedia computing, communications, and
applications (tomm), vol. 16, no. 4, pp. 133:1-133:21, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>119.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>fudong nian, teng li, bing-kun bao,
changsheng xu, relative coordinates constraint for face alignment .
neurocomputing 395: 119-127 ,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>120.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>jinguang wang, jun hu, shengsheng
qian, quan fang, changsheng xu, multimodal graph convolutional networks for
high quality content recognition . neurocomputing 412: 42-51,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>121.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>yingying zhang, quan fang,
shengsheng qian, changsheng xu, knowledge-aware attentive wasserstein
adversarial dialogue response generation . acm trans. intell. syst. technol.
11(4): 37:1-37:20,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>122.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>feng xue, richang hong, xiangnan
he, jianwei wang, shengsheng qian, changsheng xu, knowledge-based topic model
for multi-modal social event analysis . ieee trans. multim. 22(8): 2098-2110
,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>123.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>junyu gao, changsheng xu, ci-gnn:
building a category-instance graph for zero-shot video classification . ieee
trans. multim. 22(12): 3088-3100 ,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>124.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>xinhong ma, tianzhu zhang,
changsheng xu, multi-level correlation adversarial hashing for cross-modal
retrieval . ieee trans. multim. 22(12): 3101-3114 ,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>125.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>xiaowen huang, shengsheng qian,
quan fang, jitao sang, changsheng xu, meta-path augmented sequential
recommendation with contextual co-attention network . acm trans. multim.
comput. commun. appl. 16(2): 52:1-52:24 ,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>126.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>longteng guo, jing liu, shichen lu,
hanqing lu: show, tell, and polish: ruminant decoding for image captioning.
ieee trans. multim. 22(8): 2149-2162 ,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>127.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>lingxiang wu, min xu, jinqiao wang,
stuart w. perry: recall what you see continually using gridlstm in image
captioning. ieee trans. multimedia 22(3): 808-818 ,2020<o:p></o:p></span></p>
<p class=af0><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800745"></a><a
name="_toc24098150"></a><a name="_toc532562236"></a><a name="_toc532391205"><span
style='mso-bookmark:_toc532562236'><span style='mso-bookmark:_toc24098150'><span
style='mso-bookmark:_toc66800745'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>;sf[�v�pr�g</span></b></span></span></span></a><a
name="_toc24465899"></a><a name="_toc24361007"></a><a name="_toc532562406"></a><span
style='mso-bookmark:_toc532562406'><span style='mso-bookmark:_toc24361007'><span
style='mso-bookmark:_toc24465899'><span style='mso-bookmark:_toc66800745'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>medical image analysis</span></b></span></span></span></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>128.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>shengpei wang,hongwei wen,xiaopeng
hu,peng xie,shuang qiu,yinfeng qian,jiang qiu,huiguang he, transition and
dynamic reconfiguration of whole-brain network in major depressive disorder,
molecular neurobiology,vol.57,pp.4031-4044, 2020. <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>129.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>longwei fang,zuowei wang,zhiqiang
chen,fengzeng jian,shuo li,huiguang he, 3d shape reconstruction of lumbar
vertebra from two x-ray images and a ct model, ieee/caa journal of
automatica sinica,vol.7,no.4,pp.1124-1133,2020. <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>130.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>shuang qiu, weibo yi, shengpei
wang, chuncheng zhang, jing zhang, huiguang he, the lasting effects of
low-frequency repetitive transcranial magnetic stimulation on resting state
eeg in healthy subjects, ieee transactions on neural systems and
rehabilitation engineering,vol.28,no.4,pp.832-841,2020. <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>131.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>shengpei wang,yun li,shuang
qiu,chuncheng zhang,guyan wang,junfang xian,tianzuo li,huiguang
he, reorganization of rich-clubs in functional brain networks during
propofol-induced unconsciousness and natural sleep, neuroimage:
clinical,vol.25, pp.102188,2020. <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>132.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>wei wei, shuang qiu, xuelin ma, dan
li, bo wang, and huiguang he*, reducing calibration efforts in rsvp tasks
with multi-source adversarial domain adaptation , ieee transactions on neural
systems and rehabilitation engineering (tnsre), vol.28, no.11, pp:2344-2355,
2020<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>133.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>danqian liu, weifu li, chenyan ma,
weitong zheng, yuanyuan yao, chak foon tso, peng zhong, xi chen, jun ho song,
woochul choi, se-bum paik, hua han, yang dan, a common hub for sleep and
motor control in the substantia nigra. science, vol. 367(6476), pp. 440-445,
2020 (1</span><span style='font-size:12.0pt;line-height:110%;font-family:
�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'>:s</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>top)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>134.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>li a, zalesky a, yue w, howes o,
yan h, liu y, fan l, whitaker kj, xu k, rao g, li j, liu s, wang m, sun y,
song m, li p, chen j, chen y, wang h, liu w, li z, yang y, guo h, wan p, lv
l, lu l, yan j, song y, wang h, zhang h, wu h, ning y, du y, cheng y, xu j,
xu x, zhang d, wang x, jiang t, liu b. 2020. a neuroimaging biomarker for
striatal dysfunction in schizophrenia. nat med 26:558-565.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>135.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>chen j, shu h, wang z, zhan y, liu
d, liu y, zhang z. 2020. intrinsic connectivity identifies the sensory-motor
network as a main cross-network between remitted late-life depression- and
amnestic mild cognitive impairment-targeted networks. brain imaging behav
14:1130-1142.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>136.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>cui y, dong j, yang y, yu h, li w,
liu y, si j, xie s, sui j, lv l, jiang t. 2020. white matter microstructural
differences across major depressive disorder, bipolar disorder and
schizophrenia: a tract-based spatial statistics study. j affect disord
260:281-286.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>137.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>deng x, wei x, zhang y, wang b,
zhang d, yu s, jiang t, zhao j. 2020. impact of avm location on language
cortex right-hemisphere reorganization: a voxel-based lesion-symptom mapping
study. clin neurol neurosurg 189:105628.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>138.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>dou x, yao h, feng f, wang p, zhou
b, jin d, yang z, li j, zhao c, wang l, an n, liu b, zhang x, liu y. 2020.
characterizing white matter connectivity in alzheimer's disease and mild
cognitive impairment: an automated fiber quantification analysis with two
independent datasets. cortex 129:390-405.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>139.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>duan y, zhang j, zhuo z, ding j, ju
r, wang j, ma t, haller s, liu y, liu y. 2020. accelerating brain 3d
t1-weighted turbo field echo mri using compressed sensing-sensitivity
encoding (cs-sense). eur j radiol 131:109255.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>140.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>grandjean j, canella c, anckaerts
c, ayranci g, bougacha s, bienert t, buehlmann d, coletta l, gallino d, gass
n, garin cm, nadkarni na, hubner ns, karatas m, komaki y, kreitz s, mandino
f, mechling ae, sato c, sauer k, shah d, strobelt s, takata n, wank i, wu t,
yahata n, yeow ly, yee y, aoki i, chakravarty mm, chang wt, dhenain m, von elverfeldt
d, harsan la, hess a, jiang t, keliris ga, lerch jp, meyer-lindenberg a,
okano h, rudin m, sartorius a, van der linden a, verhoye m, weber-fahr w,
wenderoth n, zerbi v, gozzi a. 2020. common functional networks in the mouse
brain revealed by multi-centre resting-state fmri analysis. neuroimage
205:116278.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>141.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>guo x, yao d, cao q, liu l, zhao q,
li h, huang f, wang y, qian q, wang y, calhoun vd, johnstone sj, sui j, sun
l. 2020. shared and distinct resting functional connectivity in children and
adults with attention-deficit/hyperactivity disorder. transl psychiatry
10:65.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>142.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>he b, cao l, xia x, zhang b, zhang
d, you b, fan l, jiang t. 2020. fine-grained topography and modularity of the
macaque frontal pole cortex revealed by anatomical connectivity profiles.
neurosci bull 36:1454-1473.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>143.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>he b, yang z, fan l, gao b, li h,
ye c, you b, jiang t. 2020. monkeycbp: a toolbox for connectivity-based
parcellation of monkey brain. front neuroinform 14:14.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>144.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>he y, wu s, chen c, fan l, li k,
wang g, wang h, zhou y. 2020. organized resting-state functional
dysconnectivity of the prefrontal cortex in patients with schizophrenia.
neuroscience 446:14-27.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>145.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>jiang r, calhoun vd, cui y, qi s,
zhuo c, li j, jung r, yang j, du y, jiang t, sui j. 2020. multimodal data
revealed different neurobiological correlates of intelligence between males
and females. brain imaging behav 14:1979-1993.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>146.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>jiang r, calhoun vd, fan l, zuo n,
jung r, qi s, lin d, li j, zhuo c, song m, fu z, jiang t, sui j. 2020. gender
differences in connectome-based predictions of individualized intelligence
quotient and sub-domain scores. cereb cortex 30:888-900.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>147.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>jiang r, zuo n, ford jm, qi s, zhi
d, zhuo c, xu y, fu z, bustillo j, turner ja, calhoun vd, sui j. 2020.
task-induced brain connectivity promotes the detection of individual
differences in brain-behavior relationships. neuroimage 207:116370.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>148.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>jin d, wang p, zalesky a, liu b,
song c, wang d, xu k, yang h, zhang z, yao h, zhou b, han t, zuo n, han y, lu
j, wang q, yu c, zhang x, zhang x, jiang t, zhou y, liu y. 2020. grab-ad:
generalizability and reproducibility of altered brain activity and diagnostic
classification in alzheimer's disease. hum brain mapp 41:3379-3391.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>149.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>jin d, zhou b, han y, ren j, han t,
liu b, lu j, song c, wang p, wang d, xu j, yang z, yao h, yu c, zhao k,
wintermark m, zuo n, zhang x, zhou y, zhang x, jiang t, wang q, liu y. 2020.
generalizable, reproducible, and neuroscientifically interpretable imaging
biomarkers for alzheimer's disease. adv sci (weinh) 7:2000675.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>150.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>kim ws, shen g, liu c, kang ni, lee
kh, sui j, chung yc. 2020. altered amygdala-based functional connectivity in
individuals with attenuated psychosis syndrome and first-episode
schizophrenia. sci rep 10:17711.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>151.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>li l, song m, zhang c, qian z, li
y, li r, li c, yang z, zhou d. 2020. hemangiopericytomas: spatial
intracranial location in a voxel-based mapping study. j neuroimaging
30:370-377.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>152.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>li m, li y, jin j, yang z, zhang b,
liu y, song m, freakly c, weber e, liu f, jiang t, crozier s. 2020. a
dedicated eight-channel receive rf coil array for monkey brain mri at 9.4 t.
nmr biomed 33:e4369.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>153.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>liu cy, yan s, hou b, li ml, gao s,
li a, liu b, xu wh. 2020. mismatch of cognition and neural networks in
asymptomatic middle cerebral artery steno-occlusive disease. eur j neurol
27:1062-1065.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>154.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>liu s, li a, liu y, li j, wang m,
sun y, qin w, yu c, jiang t, liu b. 2020. mir137 polygenic risk is associated
with schizophrenia and affects functional connectivity of the dorsolateral
prefrontal cortex. psychol med 50:1510-1518.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>155.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>liu s, li a, liu y, yan h, wang m,
sun y, fan l, song m, xu k, chen j, chen y, wang h, guo h, wan p, lv l, yang
y, li p, lu l, yan j, wang h, zhang h, wu h, ning y, zhang d, jiang t, liu b.
2020. polygenic effects of schizophrenia on hippocampal grey matter volume
and hippocampus-medial prefrontal cortex functional connectivity. br j
psychiatry 216:267-274.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>156.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>luo n, sui j, abrol a, chen j,
turner ja, damaraju e, fu z, fan l, lin d, zhuo c, xu y, glahn dc, rodrigue
al, banich mt, pearlson gd, calhoun vd. 2020. structural brain architectures
match intrinsic functional networks and vary across domains: a study from 15
000 individuals. cereb cortex 30:5460-5470.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>157.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>luo n, sui j, abrol a, lin d, chen
j, vergara vm, fu z, du y, damaraju e, xu y, turner ja, calhoun vd. 2020.
age-related structural and functional variations in 5,967 individuals across
the adult lifespan. hum brain mapp 41:1725-1737.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>158.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>niu w, jiang y, zhang x, jiang t,
zhang y, yu s. 2020. changes of effective connectivity in the alpha band
characterize differential processing of audiovisual information in
cross-modal selective attention. neurosci bull 36:1009-1022.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>159.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>qi s, abbott cc, narr kl, jiang r,
upston j, mcclintock sm, espinoza r, jones t, zhi d, sun h, yang x, sui j,
calhoun vd. 2020. electroconvulsive therapy treatment responsive multimodal
brain networks. hum brain mapp 41:1775-1785.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>160.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>qi s, bustillo j, turner ja, jiang
r, zhi d, fu z, deramus tp, vergara v, ma x, yang x, stevens m, zhuo c, xu y,
calhoun vd, sui j. 2020. the relevance of transdiagnostic shared networks to
the severity of symptoms and cognitive deficits in schizophrenia: a
multimodal brain imaging fusion study. transl psychiatry 10:149.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>161.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>qi s, morris r, turner ja, fu z,
jiang r, deramus tp, zhi d, calhoun vd, sui j. 2020. common and unique
multimodal covarying patterns in autism spectrum disorder subtypes. mol
autism 11:90.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>162.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>qin q, tang y, dou x, qu y, xing y,
yang j, chu t, liu y, jia j. 2020. default mode network integrity changes
contribute to cognitive deficits in subcortical vascular cognitive
impairment, no dementia. brain imaging behav.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>163.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>rao s, luo n, sui j, xu q, zhang f.
2020. effect of the sirt1 gene on regional cortical grey matter density in
the han chinese population. br j psychiatry 216:254-258.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>164.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>song m. 2020. imaging
three-dimensional microvascular networks of brain with synchrotron radiation
microangiography. neurosci bull 36:331-332.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>165.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>song m, yang y, yang z, cui y, yu
s, he j, jiang t. 2020. prognostic models for prolonged disorders of
consciousness: an integrative review. cell mol life sci 77:3945-3961.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>166.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>sui j, jiang r, bustillo j, calhoun
v. 2020. neuroimaging-based individualized prediction of cognition and
behavior for mental disorders and health: methods and promises. biol
psychiatry 88:818-828.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>167.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>sui j, li x, bell rp, towe sl,
gadde s, chen nk, meade cs. 2020. structural and functional brain
abnormalities in hiv disease revealed by multimodal mri fusion: association
with cognitive function. clin infect dis.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>168.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>sui j, liu m, lee jh, zhang j,
calhoun v. 2020. deep learning methods and applications in neuroimaging. j
neurosci methods 339:108718.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>169.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>sun h, jiang r, qi s, narr kl, wade
bs, upston j, espinoza r, jones t, calhoun vd, abbott cc, sui j. 2020.
preliminary prediction of individual response to electroconvulsive therapy
using whole-brain functional magnetic resonance imaging data. neuroimage clin
26:102080.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>170.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>tao q, yang y, yu h, fan l, luan s,
zhang l, zhao h, lv l, jiang t, song x. 2020. anatomical connectivity-based
strategy for targeting transcranial magnetic stimulation as antidepressant
therapy. front psychiatry 11:236.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>171.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>wang l, li j, zhang s, zhang x,
zhang q, chan mf, yang r, sui j. 2020. multi-task autoencoder based
classification-regression model for patient-specific vmat qa. phys med biol
65:235023.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>172.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>wang p, zhou b, yao h, xie s, feng
f, zhang z, guo y, an n, zhou y, zhang x, liu y. 2020. aberrant hippocampal
functional connectivity is associated with fornix white matter integrity in
alzheimer's disease and mild cognitive impairment. j alzheimers dis
75:1153-1168.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>173.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>wu d, chen j, hussain m, wu l, shi
j, wu c, ma y, zhang m, yang q, fu y, duan y, ma c, yan f, zhu z, he x, yao
t, song m, zhi x, wang c, cai l, li c, li s, zhang y, ding y, ji x. 2020.
selective intra-arterial brain cooling improves long-term outcomes in a
non-human primate model of embolic stroke: efficacy depending on reperfusion
status. j cereb blood flow metab 40:1415-1426.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>174.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>wu d, fan l, song m, wang h, chu c,
yu s, jiang t. 2020. hierarchy of connectivity-function relationship of the
human cortex revealed through predicting activity across functional domains.
cereb cortex 30:4607-4616.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>175.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>wu d, jiang t. 2020.
schizophrenia-related abnormalities in the triple network: a meta-analysis of
working memory studies. brain imaging behav 14:971-980.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>176.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>wu d, li x, jiang t. 2020.
reconstruction of behavior-relevant individual brain activity: an
individualized fmri study. sci china life sci 63:410-418.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>177.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>xing y, zhu z, du y, zhang j, qu q,
sun l, li y, guo y, peng g, liu y, yu y, qiao y, xie b, shi x, lu j, jia j,
tang y. 2020. the efficacy of cognitive training in patients with amnestic
mild cognitive impairment (cog-reagent): protocol for a multi-center
randomized controlled trial. j alzheimers dis 75:779-787.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>178.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>xu q, liu f, qin w, jiang t, yu c.
2020. multiscale neurobiological correlates of human neuroticism. hum brain
mapp 41:4730-4743.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>179.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>yang y, zhang l, guo d, zhang l, yu
h, liu q, su x, shao m, song m, zhang y, ding m, lu y, liu b, li w, yue w,
fan x, yang g, lv l. 2020. association of dtnbp1 with schizophrenia: findings
from two independent samples of han chinese population. front psychiatry
11:446.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>180.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>zhao j, huang j, zhi d, yan w, ma
x, yang x, li x, ke q, jiang t, calhoun vd, sui j. 2020. functional network
connectivity (fnc)-based generative adversarial network (gan) and its
applications in classification of mental disorders. j neurosci methods
341:108756.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>181.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>zhi d, wu w, xiao b, qi s, jiang r,
yang x, yang j, xiao w, liu c, long h, calhoun vd, long l, sui j. 2020. nr4a1
methylation associated multimodal neuroimaging patterns impaired in temporal
lobe epilepsy. front neurosci 14:727.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>182.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>zuo n, hu t, liu h, sui j, liu y,
jiang t. 2020. gray matter-based age prediction characterizes different
regional patterns. neurosci bull.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>183.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>zuo n, salami a, liu h, yang z,
jiang t. 2020. functional maintenance in the multiple demand network
characterizes superior fluid intelligence in aging. neurobiol aging
85:145-153.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt'><span lang=en-us style='font-size:
12.0pt;line-height:110%'><o:p> </o:p></span></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800746"><b><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>uir�v�pr�g</span></b></a><span
style='mso-bookmark:_toc66800746'><b><span lang=en-us style='font-size:12.0pt;
line-height:110%'>biology image analysis</span></b></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>184.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>chi xiao, xi chen, qiwei xie ,
guoqing li, hao xiao, jingdong song, hua han, virus identification in electron
microscopy images by residual mixed attention network, computer methods and
programs in biomedicine, vol. 198</span><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>2020 (2</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>:s^�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>top)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>185.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>qiwei xie, yanfei liu, hui huang,
bei hong, jinxin wang, hua han, yue liu, an innovative method for screening
and evaluating the degree of diabetic retinopathy and possible drug treatment
options based on artifical algorithms, pharmacological research, vol. 159</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>2020 (2</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>:s^�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>top)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt'><span lang=en-us style='font-size:
12.0pt;line-height:110%'><o:p> </o:p></span></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800747"></a><a
name="_toc40189717"><span style='mso-bookmark:_toc66800747'><b><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>pg�e�yf[</span></b></span></a><span
style='mso-bookmark:_toc40189717'><span style='mso-bookmark:_toc66800747'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>materials science</span></b></span></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>186.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>jie zhao, lijun shen, fang liu, pan
zhao, qi huang, hua han, lianmao peng, xuelei liang, quality metrology of
carbon nanotube thin films and its application for carbon nanotube-based
electronics, nano research</span><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>vol. 13, pp. 1749-1755, 2020 (1</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>:s</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>top)<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>187.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>zi wang, lina zhang, weifu li,
zijun qin, zexin wang, zihang li, liming tan, lilong zhu, feng liu, hua han,
liang jiang, a high-throughput approach to explore the multi-component alloy
space: a case study of nickel-based superalloys, journal of alloys and
compounds, vol. 828. pp. 158100, 2020 (1</span><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>:s</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>top)<o:p></o:p></span></p>
<p class=af0><b style='mso-bidi-font-weight:normal'><i style='mso-bidi-font-style:
normal'><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></i></b></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800748"></a><a
name="_toc24098151"></a><a name="_toc532562237"></a><a name="_toc532391206"><span
style='mso-bookmark:_toc532562237'><span style='mso-bookmark:_toc24098151'><span
style='mso-bookmark:_toc66800748'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�����b/g</span></b></span></span></span></a><a
name="_toc24465900"></a><a name="_toc24361008"></a><a name="_toc532562407"></a><span
style='mso-bookmark:_toc532562407'><span style='mso-bookmark:_toc24361008'><span
style='mso-bookmark:_toc24465900'><span style='mso-bookmark:_toc66800748'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>speech and language
technology</span></b></span></span></span></span><b><span lang=en-us
style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>188.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>jiajun zhang, long zhou, yang zhao
and chengqing zong. synchronous bidirectional inference for neural sequence
generation. artificial intelligence, 281(2020)103234, pp.1-19<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>189.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>shaonan wang, jiajun zhang, haiyan
wang, nan lin and chengqing zong. fine-grained neural decoding with
distributed word representations. information sciences, 507 (2020) 256 272<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>190.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>kexin wang, yu zhou, jiajun zhang,
shaonan wang, and chengqing zong. structurally-comparative hinge loss for
dependency-based neural text representation. acm transactions on asian and
low-resource language information processing (tallip), vol. 19, no. 4,
article 58, may 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>191.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>qianlong du, chengqing zong and
keh-yih su. conducting natural language inference with word-pair-dependency
and local context. acm transactions on asian and low-resource language
information processing (tallip), volume 19, issue 3 april 2020, article no.:
47, pp 1-23.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>192.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>cunhang fan, jianhua tao, bin liu,
jiangyan yi, zhengqi wen and xuefei liu, end-to-end post-filter for speech
separation with deep attention fusion features , ieee/acm transactions on
audio, speech and language processing, vol.28, pp. 1303-1314, 2020-03.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>193.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>bocheng zhao, jianhua tao, minghao
yang, zhengkun tian, cunhang fan, ye bai, deep imitator: handwriting
calligraphy imitation via deep attention networks , pattern recognition, vol.
104, august 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>194.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>yongwei li, ken-ichi sakakibara,
masato akagi, simultaneous estimation of glottal source waveforms and vocal
tract shapes from speech signals based on arx-lf model, journal of signal processing
systems, vol. 92, no. 8, pp.831-838, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>195.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>bai ye ,yi<span
style='mso-spacerun:yes'>� </span>jiangyan,tao<span
style='mso-spacerun:yes'>� </span>jianhua, wen<span
style='mso-spacerun:yes'>� </span>zhengqi,fan cunhang, a public chinese
dataset for language model adaptation , journal of signal processing systems
for signal image and video technology, vol. 92, no. 8, pp.839-851, </span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>yr
r</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>: si, 2020-08.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>196.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>lian zheng; li ya; tao jianhua;
huang jian; niu mingyue, expression analysis based on face regions in
real-world conditions , international journal of automation and computing,
vol. 17, no. 1, pp. 96-107, 2020-02.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo4'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>197.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>ziping zhao , zhongtian bao ,
zixing zhang , nicholas cummins , haishuai wang , jianhua tao , bj�rn
schuller, automatic assessment of depression from speech via a hierarchical
attention transfer network and attention autoencoder , ieee journal of
selected topics in signal processing, vol. 14, no. 2, pp. 423-434, 2020-02.<o:p></o:p></span></p>
<p class=af0><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></p>
<p class=af0 style='mso-outline-level:2'><a name="_toc66800749"></a><a
name="_toc24098152"></a><a name="_toc532562238"></a><a name="_toc532391207"><span
style='mso-bookmark:_toc532562238'><span style='mso-bookmark:_toc24098152'><span
style='mso-bookmark:_toc66800749'><b style='mso-bidi-font-weight:normal'><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�v�q
rir</span></b></span></span></span></a><a
name="_toc24465901"></a><a name="_toc24361009"></a><a name="_toc532562408"></a><span
style='mso-bookmark:_toc532562408'><span style='mso-bookmark:_toc24361009'><span
style='mso-bookmark:_toc24465901'><span style='mso-bookmark:_toc66800749'><b
style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt;
line-height:110%'>national journals</span></b></span></span></span></span><b
style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt;
line-height:110%'><o:p></o:p></span></b></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l2 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�[b�^��n{|���b/gu\g�-n�v�n�]zf��f[o����</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>2020</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>t^,{</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>10</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>ws,{</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>1</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>g�,{</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>1-5</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>u�</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l2 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>2.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>\g)p����[b�^�ςkq�k�)r(u
nn�e�v<span
lang=en-us style='font-size:12.0pt;line-height:110%'>2020, 2(1): 26-35<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l2 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>3.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�nsf�r��[b�^���t�{�z�~�gmonx�v^y�~:ghv�ы�zf���yf[n�b/gf[�b�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>2020, 2(2): 144-152<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l2 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>4.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>0u�y� _�[�o</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>. </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�w�n�����~!j�w�v:ghv�ыы�e�hkm�e�l</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>[j]. </span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�`�b�]z</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>, 2020, 6(5):015-026<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l2 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>5.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�sux�]ywm_l�ng�ts^�4t�k�~</span><span lang=en-us style='font-size:
12.0pt;line-height:110%'>. </span><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�w�nqqb�w�vݍ�y oahvn�v:g�v�v�[mo�yh�[</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>. </span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>ꁨrsf[�b�</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>vol. 46, no. 6, pp. 1154-1165,
2020.<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l2 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>6.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�nwm�m�hg\ul��_8^܀��w�ny!j`��eq�v�[�b_ɖ��ub�e�l</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'> [j]</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>����{:gxvzn�su\�</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>57(07):1522-1530, 2020.<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l2 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>7.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'> _���s~��bs?e���hg`�[�_[�~�n���^o� _sfo�</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>. </span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�w�n</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>cnn</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�voo�[s^b��vcq }ƌ rn^@\�inr�g</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>. </span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>-n�vsoɖf[n�v�pr�g</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>. 2020, 25(2): 174-182.<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l2 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>8.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>m. yuan, l. dai, d.-m. yan, l. zhang, x.-p. zhang. fast and
error-bounded space-variant bilateral filtering. journal of computer science
and technology.2020, 34(3): 550-568<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l2 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>9.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>kang liu<span style='mso-tab-count:1'>����� </span>, a
survey on neural relation extraction,china technol.<span style='mso-tab-count:
1'>��� </span>1971 1989,2020.10<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l2 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>10.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yunze gao, yingying chen, jinqiao wang, hanqing lu:
progressive rectification network for irregular text recognition. sci. china
inf. sci. 63(2): 120101 (2020)<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l2 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>11.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>v��^ns��pwzs�f_l�q��sb���jl�m���*o �nt�*o�v�su\ncb</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>, </span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�oo`�[hqf[�b</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>, </span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>ws</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>:5 </span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>g</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>:2 </span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>u�</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>:28-38</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>2020-04.<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l2 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>12.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�so�c�vf�uop[�e�y[�tws�</span><span lang=en-us style='font-size:
12.0pt;line-height:110%'> </span><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>ɖɉ�[�b7h,gub�b/g�i��</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�oo`�[hqf[�b</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, vol. 5, no. 2, pp. 39-48, 2020.<o:p></o:p></span></p>
<p class=af0><b><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></b></p>
<p class=af0 style='mso-outline-level:2'><a name="_toc66800750"></a><a
name="_toc24098153"></a><a name="_toc532562239"></a><a name="_toc532391208"><span
style='mso-bookmark:_toc532562239'><span style='mso-bookmark:_toc24098153'><span
style='mso-bookmark:_toc66800750'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�ve�o��</span></b></span></span></span></a><a
name="_toc24465902"></a><a name="_toc24361010"></a><a name="_toc532562409"></a><span
style='mso-bookmark:_toc532562409'><span style='mso-bookmark:_toc24361010'><span
style='mso-bookmark:_toc24465902'><span style='mso-bookmark:_toc66800750'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>international
conferences</span></b></span></span></span></span><b><span lang=en-us
style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800751"></a><a
name="_toc24098154"></a><a name="_toc532562240"></a><a name="_toc532391209"><span
style='mso-bookmark:_toc532562240'><span style='mso-bookmark:_toc24098154'><span
style='mso-bookmark:_toc66800751'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>���{:gɖɉ</span></b></span></span></span></a><a
name="_toc24465903"></a><a name="_toc24361011"></a><a name="_toc532562410"></a><span
style='mso-bookmark:_toc532562410'><span style='mso-bookmark:_toc24361011'><span
style='mso-bookmark:_toc24465903'><span style='mso-bookmark:_toc66800751'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>computer vision</span></b></span></span></span></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>1.<span
style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>sheng han, wei gao*, yiming wan, yihong wu. scene-unified
image translation for visual localization. abu dhabi national exhibition
center (adnec), abu dhabi, united arab emirates (uae), 10.25-10.28,
2266-2270, icip 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>2.<span
style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yiming wan, wei gao*, sheng han, yihong wu. boosting
image-based localization via randomly geometric data augmentation. abu dhabi
national exhibition center (adnec), abu dhabi, united arab emirates (uae),
10.25-10.28, 688-692, icip 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>3.<span
style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yiming wan, wei gao*, sheng han, yihong wu. dynamic
object-aware monocular visual odometry with local and global information
aggregation. abu dhabi national exhibition center (adnec), abu dhabi, united
arab emirates (uae), 10.25-10.28, 603-607, icip 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>4.<span
style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>b. liu, q. dong*, and z. hu. zero-shot learning from
adversarial feature residual to compact visual feature. usa 11547-11554 ,
aaai2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>5.<span
style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>mengqi rong, shuhan shen, zhanyi hu: 3d semantic labeling
of photogrammetry meshes based on active learning. international conference
on pattern recognition (icpr): milan, italy, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>6.<span
style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xiangwei dang, xingdong liang, yanlei li, zheng rong.
moving objects elimination towards enhanced dynamic slam fusing lidar and
mmw-radar. 2020 ieee mtt-s international conference on microwaves for
intelligent mobility (icmim), 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>7.<span
style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xingjia pan, yuqiang ren, kekai sheng, weiming dong, haolei
yuan, xiaowei guo, chongyang ma, changsheng xu: dynamic refinement network
for oriented and densely packed object detection. ieee/cvf conference on
computer vision and pattern recognition (cvpr) 2020: 11204-11213<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>8.<span
style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yiming li, xiaoshan yang, changsheng xu: structured neural
motifs: scene graph parsing via enhanced context, multimedia modeling (mmm),
pp. 175-188, daejeon, south korea, january 5-8, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>9.<span
style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xuecheng ning, xiaoshan yang, changsheng xu: multi-hop
interactive cross-modal retrieval, multimedia modeling (mmm), pp. 681-693,
daejeon, south korea, january 5-8, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>10.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>lin chen, yong zhao,
shibiao xu, shuhui bu, pengcheng han, gang wan. densefusion: large-scale
online dense pointcloud and dsm mapping for uavs, ieee/rsj international
conference on intelligent robots and systems (iros), 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>11.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yuyang zhang, jinge
wang, shibiao xu1, xiao liu and xiaopeng zhang. mlifeat: multi-level
information fusion based deep local features, asian conference on computer
vision, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>12.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jianbo liu, yongcheng
liu, ying wang, v�ronique prinet, shiming xiang and chunhong pan. decoupled
representation learning for skeleton-based gesture recognition, in
proceedings of the ieee/cvf conference on computer vision and pattern
recognition, pp. 5751-5760, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>13.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>xin zhang, chunlei huo,
and chunhong pan, view-angle invariant object monitoring without image
registration, in proceedings of the ieee international conference on
acoustics, speech and signal processing, pp. 2283-2287,2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>14.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jin gao, weiming hu, and
yan lu, recursive least-squares estimator-aided online learning for visual
tracking, ieee conference on computer vision and pattern recognition (cvpr),
pp. 7386-7395, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>15.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>ziqi zhang, yaya shi,
chunfeng yuan, bing li, peijinwang, weiming hu, and zhengjun zha, object
relational graph with teacher-recommended learning for video captioning,
ieee conference on computer vision and pattern recognition (cvpr), pp.
13278-13288, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>16.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zhipeng zhang, houwen
peng, jianlong fu, bing li, and weiming hu, ocean: object-aware anchor-free
tracking, european conference on computer vision (eccv), vol. 21, pp.
771-787, 2020. <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>17.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yufan liu, minglang
qiao, mai xu, bing li, and weiming hu, and ali borji, learning to predict
salient faces: a novel visual-audio saliency model, european conference on
computer vision (eccv), vol. 20, pp. 413-429, 2020. <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>18.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>shaoru wang, yongchao
gong, junling xing, lichao huang, chang huang, and weiming hu, rdsnet: a new
deep architecture for reciprocal object detection and instance segmentation,
aaai conference on artificial intelligence (aaai), pp. 12208-12215, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>19.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zhenbang li, qiang wang,
jin gao, bing li, and weiming hu, end-to-end temporal feature aggregation
for siamese trackers, ieee international conference on image processing, pp.
2056-2060, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>20.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zhenbang li, qiang wang,
jin gao, bing li, and weiming hu, globally spatial-temporal perception: a
long-term tracking system, ieee international conference on image
processing, pp. 2066-2070, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>21.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zongwei zhou, yangxi li,
jin gao, junliang xing, liang li, and weiming hu, anchor-free one-stage
online multi-object tracking, chinese conference on pattern recognition and
computer vision (prcv), vol. 2, pp. 55-68,2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>22.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>longteng guo, jing liu,
xinxin zhu, peng yao, shichen lu, hanqing lu: normalized and geometry-aware
self-attention network for image captioning. cvpr 2020: 10324-10333<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>23.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>ke cheng, yifan zhang,
xiangyu he, weihan chen, jian cheng, hanqing lu:skeleton-based action
recognition with shift graph convolutional network. cvpr 2020: 180-189<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>24.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>xiaomei zhang, yingying
chen, bingke zhu, jinqiao wang and ming tang: part-aware context network for
human parsin cvpr2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>25.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>shuai zheng, zhenfeng
zhu, xingxing zhang, zhizhe liu, jian cheng, yao zhao. distribution-induced
bidirectional generative adversarial network for graph representation
learning. cvpr 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>26.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>xiangyu he, zitao mo, ke
cheng, weixiang xu, qinghao hu, peisong wang, qingshan liu, jian cheng.
proxybnn: learning binarized neural networks via proxy matrices. eccv 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>27.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>ke cheng, yifan zhang,
congqi cao, lei shi, jian cheng, hanqing lu:decoupling gcn with dropgraph
module for skeleton-based action recognition. eccv (24) 2020: 536-553<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>28.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>xin wen, biying li,
haiyun guo, zhiwei liu, guosheng hu, ming tang, jinqiao wang: adaptive
variance based label distribution learning for facial age estimation. eccv
(23) 2020: 379-395<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>29.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>tong wang, yousong zhu,
chaoyang zhao, wei zeng, yaowei wang, jinqiao wang, and ming tang. large
batch optimization for object detection: training coco in 12 minutes. eccv
2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>30.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>lu zhou, yingying chen,
yunze gao, jinqiao wang, and hanqing lu</span><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>occlusion-aware siamese network for
human pose estimation.eccv 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>31.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>xiaomei zhang, yingying
chen, bingke zhu, jinqiao wang, and ming tang. blended grammar network for
human parsing. eccv 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>32.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>kuan zhu, haiyun guo,
zhiwei liu, ming tang, and jinqiao wang. identity-guided human semantic
parsing for person re-identification. eccv 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>33.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>linyu zheng, ming tang,
yingying chen, jinqiao wang, and hanqing lu. learning feature embeddings for
discriminant model based tracking. eccv 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>34.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>lei shi, yifan zhang,
jian cheng and hanqing lu: decoupled spatial-temporal attention network for
skeleton-based action-gesture recognition, accv 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>35.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zerui chen, yan huang,
hongyuan yu, bin xue, ke han, yiru guo, liang wang, towards part-aware
monocular 3d human pose estimation: an architecture search approach, proc.
european conference on computer vision, pp. 715-732, august 2020, glasgow,
uk.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>36.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>weilun chen, zhaoxiang
zhang, xiaolin hu, baoyuan wu, boosting decision-based black-box adversarial
attacks with random sign flip, proc. european conference on computer vision,
pp. 276-293, august 2020, glasgow, uk.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>37.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jie cao, huaibo huang,
yi li, ran he, zhenan sun, informative sample mining network for
multi-domain image-to-image translation, proc. european conference on
computer vision, pp. 404-419, august 2020, glasgow, uk.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>38.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yibo hu, xiang wu, ran he,
tf-nas: rethinking three search freedoms of latency-constrained
differentiable neural architecture search, proc. european conference on
computer vision, pp. 123-139, august 2020, glasgow, uk.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>39.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>chenyang si, xuecheng
nie, wei wang, liang wang, tieniu tan, jiashi feng, adversarial
self-supervised learning for semi-supervised 3d action recognition, proc.
european conference on computer vision, pp. 35-51, august 2020, glasgow, uk.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>40.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>junsong fan, zhaoxiang
zhang, tieniu tan, employing multi-estimations for weakly-supervised
semantic segmentation, proc. european conference on computer vision, pp.
332-348, august 2020, glasgow, uk.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>41.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>ke han, yan huang, zerui
chen, liang wang, tieniu tan, prediction and recovery for adaptive
low-resolution person re-identification, proc. european conference on
computer vision, pp. 193 20209, august 2020, glasgow, uk.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>42.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>peipei li, huaibo huang,
yibo hu, xiang wu, ran he, zhenan sun, hierarchical face aging through
disentangled latent characteristics, proc. european conference on computer
vision, pp. 86-101, 44044, glasgow, uk.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>43.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>kunbo zhang, zhenteng
shen, yunlong wang, and z. sun, all-in-focus iris camera with a great
capture volume, proc. international joint conference on biometrics,
september 2020, houston, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>44.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>leyuan wang, kunbo
zhang, min ren, yunlong wang, zhenan sun, recognition oriented iris image
quality assessment in the feature space, proc. international joint
conference on biometrics, september 2020, houston, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>45.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yu tian, kunbo zhang,
leyuan wang, and zhenan sun, face anti-spoofing by learning polarization
cues in a real-world scenario, proc. international conference on advances in
image processing (icaip), november 2020, chengdu, china.<o:p></o:p></span></p>
<p class=af0><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800752"></a><a
name="_toc24098155"></a><a name="_toc532562241"></a><a name="_toc532391210"><span
style='mso-bookmark:_toc532562241'><span style='mso-bookmark:_toc24098155'><span
style='mso-bookmark:_toc66800752'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>!j_ƌ r</span></b></span></span></span></a><a
name="_toc24465904"></a><a name="_toc24361012"></a><a name="_toc532562411"></a><span
style='mso-bookmark:_toc532562411'><span style='mso-bookmark:_toc24361012'><span
style='mso-bookmark:_toc24465904'><span style='mso-bookmark:_toc66800752'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>pattern recognition</span></b></span></span></span></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>46.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>qiongyi zhou, changde du,
dan li, haibao wang, jian k. liu, huiguang he, simultaneous neural spike
encoding and decoding based on cross-modal dual deep generative model, 2020
international joint conference on neural networks,2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>47.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>wei wei,shuang
qiu,xuelin ma,dan li,chuncheng zhang,huiguang he, a transfer learning
framework for rsvp-based brain computer interface ieee engineering in
medicine and biology society,2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>48.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>chenyao wu,shuang
qiu,jiezhen xing,huiguang he, a cnn-based compare network for classification
of ssveps in human walkingieee engineering in medicine and biology society
, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>49.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>guirong bai, shizhu he,
kang liu, jun zhao, zaiqing nie, pre-trained language model based active
learning for sentence matching<span style='mso-tab-count:1'> </span>, the
28th international conference on computational linguistics (coling 2020),
1495 1504,barcelona(online), 12.8-12.13, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>50.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>xinyu zuo, yubo chen,
kang liu and jun zhao, knowdis: knowledge enhanced data augmentation for
event causality detection via distant supervision,the 28th international
conference on computational linguistics (coling 2020)
,1544-1550,barcelona(online),12.8-12.13,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>51.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jian liu, dianbo sui,
kang liu, jun zhao, graph-based knowledge integration for question answering
over dialogue, the 28th international conference on computational linguistics
(coling 2020),1544-1550,barcelona(online),12.8-12.13,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>52.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>pei chen, hang yang,
kang liu, ruihong huang, yubo chen, taifeng wang, jun zhao,reconstructing
event regions for event extraction via graph attention networks,proceedings
of the 1st conference of the asia-pacific chapter of the association for
computational linguistics and the 10th international joint conference on
natural language processing (aacl 2020),811 820,suzhou,china,11.6-11.9,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>53.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>pengfei cao, yubo chen,
jun zhao, taifeng wang,incremental event detection via knowledge
consolidation networks,proceedings of the 2020 conference on empirical
methods in natural language processing (emnlp 2020),707-717<span
style='mso-tab-count:1'>����� </span>,the dominican
republic(online),11.16-11.20,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>54.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zhixing tian, yuanzhe
zhang, kang liu, jun zhao,yantao jia, zhicheng sheng,scene restoring for
narrative machine reading comprehension<span style='mso-tab-count:1'>����� </span>,the
2020 conference on empirical methods in natural language processing (emnlp
2020),3063-3073,the dominican republic(online),11.16-11.20,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>55.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jian liu, yubo chen,
kang liu, yantao jia, zhicheng sheng, how does context matter? on the
robustness of event detection with context-selective mask
generalization,proceedings of the 2020 conference on empirical methods in
natural language processing (emnlp),2523-2532,the dominican republic(online),11.16-11.20,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>56.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jian liu, yubo chen,
kang liu, wei bi, xiaojiang liu,event extraction as machine reading
comprehension,proceedings of the 2020 conference on empirical methods in
natural language processing (emnlp),1641-1651,the dominican republic(online),11.16-11.20,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>57.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>dianbo sui, yubo chen,
jun zhao, yantao jia, yuantao xie, weijian sun,feded: federated learning via
ensemble distillation for medical relation extraction,proceedings of the 2020
conference on empirical methods in natural language processing
(emnlp),2118-2128,the dominican republic(online),11.16-11.20,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>58.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zhixing tian, yuanzhe
zhang, xinwei feng, wenbin jiang, yajuan lyu, kang liu, jun zhao,capturing
sentence relations for answer sentence selection with multi-perspective graph
encoding,the thirty-fourth aaai conference on artificial intelligence (aaai
2020)<span style='mso-tab-count:1'>����� </span>,9032-9039,newyork,2.7-2.12,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>59.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jian liu, yubo chen, jun
zhao,knowledge enhanced event causality identification with mention masking
generalizations,proceedings of the twenty-ninth international joint
conference on artificial intelligence
(ijcai-2020),3608-3614,japan(online),6.11-6.17,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>60.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>pengfei cao, chenwei
yan, xiangling fu, yubo chen, kang liu, jun zhao, shengping liu, weifeng
chong,clinical-coder: assigning interpretable icd-10 codes to chinese
clinical notes,proceedings of the 59th annual meeting of the association for
computational linguistics(acl 2020)<span style='mso-spacerun:yes'>�
</span>demo,294-301,seattle(online),7.5-7.10,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>61.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>pengfei cao, yubo chen,
kang liu, jun zhao, shengping liu, weifeng chong,hypercore: hyperbolic and
co-graph representation for automatic icd coding,proceedings of the 59th
annual meeting of the association for computational linguistics(acl 2020)<span
style='mso-tab-count:1'>����� </span>,3105-3114,seattle(online),7.5-7.10,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>62.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yuanzhe zhang, zhongtao
jiang, tao zhang, shiwan liu, jiarun cao, kang liu, shengping liu, jun
zhao,mie: a medical information extractor towards medical dialogues,<span
style='mso-tab-count:1'>��� </span>proceedings of the 59th annual meeting of
the association for computational linguistics(acl
2020),6460-6469,seattle(online),7.5-7.10,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>63.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yu zhao, anxiang zhang,
ruobing xie, kang liu, xiaojie wang,connecting embeddings for knowledge graph
entity typing,proceedings of the 58th annual meeting of the association for
computational linguistics (acl 2020),6419-6428,seattle(online),7.5-7.10,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>64.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jiaxing wang, haoli bai,
jiaxiang wu, xupeng shi, junzhou huang, irwin king, michael lyu, jian cheng.
revisiting parameter sharing for automatic neural channel number search.
neurips 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>65.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>peisong wang, qiang
chen, xiangyu he, jian cheng. towards accurate post-training network
quantization via bit-split and stitching. icml 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>66.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>gang li, peisong wang,
zejian liu, cong leng, jian cheng. hardware acceleration of cnn with one-hot
quantization of weights and activations. date 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>67.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>cong wang, cheng-lin
liu, scene text recognition by attention network with gated embedding,
international joint conference on neural networks (ijcnn), glasgow, uk, july
19-24, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>68.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>xiao-hui li, fei yin,
cheng-lin liu, page segmentation using convolutional neural network and
graphical model, iapr workshop on document analysis systems (das), wuhan,
china, july 26-29, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>69.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>guo-wang xie, fei yin,
xu-yao zhang, cheng-lin liu, dewarping document image by displacement flow
estimation with fully convolutional network, iapr workshop on document
analysis systems (das), wuhan, china, july 26-29, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>70.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>ming-chao xu, fei yin,
cheng-lin liu, srr-gan: super-resolution recognition gan for low-resolved
text images, international conference on frontiers of handwriting recognition
(icfhr), dortmund, germany, september 7-10, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>71.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zhen-xing wang, qiu-feng
wang, fei yin, cheng-lin liu, weakly supervised learning for
over-segmentation based handwritten chinese text recognition, international
conference on frontiers of handwriting recognition (icfhr), dortmund,
germany, september 7-10, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>72.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>da-han wang, fei-yin,
jin-wen wu, yu-pei yan, zhi-cai huang, gui-yun chen, yao wang, cheng-lin liu,
icfhr 2020 competition on offline recognition and spotting of handwritten mathematical
expressions offrashme, international conference on frontiers of handwriting
recognition (icfhr), dortmund, germany, september 7-10, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>73.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>longfei xie, xu-yao
zhang, gate-fusion transformer for multimodal sentiment analysis,
international conference on pattern recognitin and aritificial intelligence
(icprai), october 19-23, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>74.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>caiyong wang, yunlong
wang, boqiang xu, yong he, zhiwei dong, zhenan sun, a lightweight
multi-label segmentation network for mobile iris biometrics, proc. ieee international
conference on acoustics, speech, and signal processing, pp. 1006-1010, may
2020, barcelona, spain.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>75.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>qi zhang, zhen lei,
zhaoxiang zhang, stan z. li, context-aware attention network for image-text
retrieval, proc. ieee conference on computer vision and pattern recognition,
pp. 3533-3542, june 2020, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>76.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>wenkai dong, zhaoxiang
zhang, chunfeng song, tieniu tan, instance guided proposal network for
person search, proc. ieee conference on computer vision and pattern
recognition, pp. 2582-2591, june 2020, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>77.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zhihang li, teng xi,
jiankang deng, gang zhang, shengzhao wen, ran he, gp-nas: gaussian process
based neural architecture search, proc. ieee conference on computer vision
and pattern recognition, pp. 11930-11939, june 2020, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>78.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>junran peng, xingyuan
bu, ming sun, zhaoxiang zhang, tieniu tan, junjie yan, large-scale object
detection in the wild from imbalanced multi-labels, proc. ieee conference on
computer vision and pattern recognition, pp. 9706-9715, june 2020, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>79.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>ya jing, wei wang, liang
wang, tieniu tan, cross-modal cross-domain moment alignment network for
person search, proc. ieee conference on computer vision and pattern
recognition, pp. 10675-10683, june 2020, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>80.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>boyan duan, chaoyou fu,
yi li, xingguang song, ran he, cross-spectral face hallucination via
disentangling independent factors, proc. ieee conference on computer vision
and pattern recognition, pp. 7927-7935, june 2020, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>81.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>wenkai dong, zhaoxiang
zhang, chunfeng song, tieniu tan, bi-directional interaction network for
person search, proc. ieee conference on computer vision and pattern
recognition, pp. 2836-2845, june 2020, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>82.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>wentao jiang, si liu,
chen gao, jie cao, ran he, jiashi feng, shuicheng yan, psgan: pose and
expression robust spatial-aware gan for customizable makeup transfer, proc.
ieee conference on computer vision and pattern recognition, pp. 5193-5201,
june 2020, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>83.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>junsong fan, zhaoxiang
zhang, chunfeng song, tieniu tan, learning integral objects with intra-class
discriminator for weakly-supervised semantic segmentation, proc. ieee
conference on computer vision and pattern recognition, pp. 4282-4291, june
2020, usa.<o:p></o:p></span></p>
<p class=af0><b><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></b></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800753"></a><a
name="_toc24098156"></a><a name="_toc532562242"></a><a name="_toc532391211"><span
style='mso-bookmark:_toc532562242'><span style='mso-bookmark:_toc24098156'><span
style='mso-bookmark:_toc66800753'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�n�]zf��</span></b></span></span></span></a><a
name="_toc24465905"></a><a name="_toc24361013"></a><a name="_toc532562412"></a><span
style='mso-bookmark:_toc532562412'><span style='mso-bookmark:_toc24361013'><span
style='mso-bookmark:_toc24465905'><span style='mso-bookmark:_toc66800753'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>artificial intelligence</span></b></span></span></span></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>84.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>kekai sheng, weiming dong, menglei chai, guohui wang, peng
zhou, feiyue huang, bao-gang hu, rongrong ji, chongyang ma: revisiting image
aesthetic assessment via self-supervised feature learning. the thirty-fourth
aaai conference on artificial intelligence (aaai) 2020: 5709-5716<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>85.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jiaxing wang, jiaxiang
wu, haoli bai, jian cheng. m-nas: meta neural architecture search. aaai 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>86.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>peisong wang, xiangyu
he, gang li, tianli zhao, jian cheng. sparsity-inducing binarized neural
networks. aaai 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>87.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>lu zhou, yingying
chen,jinqiao wang, hanqing lu: progressive bi c3d pose grammar for human pose
estimation aaai2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>88.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>ya jing, chenyang si,
junbo wang, wei wang, liang wang, tieniu tan, pose-guided multi-granularity
attention network for text-based person search, proc. aaai conference on
artificial intelligence, pp.<span style='mso-spacerun:yes'>�
</span>11189-11196, february 2020, new york, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>89.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>qi li*, yunfan liu*,
zhenan sun, age progression and regression with spatial attention modules,
proc. aaai conference on artificial intelligence, pp. 11378-11385, february
2020, new york, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>90.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>linjiang huang, yan
huang, wanli ouyang and liang wang, part-level graph convolutional network
for skeleton-based action recognition, proc. aaai conference on artificial
intelligence, pp. 11045-11052, february 2020, new york, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>91.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>linjiang huang, yan
huang, wanli ouyang and liang wang, relational prototypical network for
weakly supervised temporal action localization, proc. aaai conference on
artificial intelligence, pp. 11053-11060, february 2020, new york, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>92.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>min ren, yunlong wang,
zhenan sun, tieniu tan, dynamic graph representation for occlusion handling
in biometrics, proc. aaai conference on artificial intelligence, pp.
11940-11947, february 2020, new york, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>93.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yanbei liu, xiao wang,
shu wu, zhitao xiao, independence promoted graph disentangled networks,
proc. aaai conference on artificial intelligence, pp. 4916-4923, february
2020, new york, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>94.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>junsong fan, zhaoxiang
zhang, tieniu tan, chunfeng song, jun xiao, cian: cross-image affinity net
for weakly supervised semantic segmentation, proc. aaai conference on
artificial intelligence, pp. 10762-10769, february 2020, new york, usa.<o:p></o:p></span></p>
<p class=af0><a name="ole_link2"><s><span lang=en-us style='font-size:12.0pt;
line-height:110%'><o:p><span style='text-decoration:none'> </span></o:p></span></s></a></p>
<p class=af0 style='mso-outline-level:3'><span style='mso-bookmark:ole_link2'><a
name="_toc66800754"></a><a name="_toc40189724"><span style='mso-bookmark:
_toc66800754'><b><span style='font-size:12.0pt;line-height:110%;font-family:
�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'>:ghvf[`n</span></b></span></a></span><span
style='mso-bookmark:ole_link2'><span style='mso-bookmark:_toc40189724'><span
style='mso-bookmark:_toc66800754'><b><span lang=en-us style='font-size:12.0pt;
line-height:110%'>machine learning</span></b></span></span></span><span
style='mso-bookmark:ole_link2'><b><span lang=en-us style='font-size:12.0pt;
line-height:110%'><o:p></o:p></span></b></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><span
style='mso-bookmark:ole_link2'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>95.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>changde du, changying
du, lijie huang, huiguang he, conditional generative neural decoding with
structured cnn feature prediction, aaai, pp:2629-2636, 2020.<o:p></o:p></span></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><span
style='mso-bookmark:ole_link2'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>96.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zhengxiong luo, yan huang,
shang li, liang wang, and tieniu tan, unfolding the alternating optimization
for blind super resolution, conference on neural information processing
systems, december 2020, vancouver, canada.<o:p></o:p></span></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><span
style='mso-bookmark:ole_link2'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>97.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>hao zhu, chaoyou fu,
qianyi wu, wayne wu, chen qian, ran he, aot: appearance optimal transport
based identity swapping for forgery detection, proc. conference on neural
information processing systems, december 2020, vancouver, canada.<o:p></o:p></span></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><span
style='mso-bookmark:ole_link2'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>98.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>bojing feng, wenfang
xue, bindang xue, zeyu liu, every corporation owns its image: corporate
credit ratinings via convolutional neural networks, proc. international
conference on computer and communications, pp. 1578-1583, december 2020,
chengdu, china.<o:p></o:p></span></span></p>
<p class=msonormal><span style='mso-bookmark:ole_link2'><span lang=en-us
style='font-size:12.0pt'><o:p> </o:p></span></span></p>
<p class=af0 style='mso-outline-level:3'><span style='mso-bookmark:ole_link2'><a
name="_toc66800755"></a><a name="_toc40189725"><span style='mso-bookmark:
_toc66800755'><b><span style='font-size:12.0pt;line-height:110%;font-family:
�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'>pencc�c</span></b></span></a></span><span
style='mso-bookmark:ole_link2'><span style='mso-bookmark:_toc40189725'><span
style='mso-bookmark:_toc66800755'><b><span lang=en-us style='font-size:12.0pt;
line-height:110%'>data mining</span></b></span></span></span><span
style='mso-bookmark:ole_link2'><b><span lang=en-us style='font-size:12.0pt;
line-height:110%'><o:p></o:p></span></b></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><span
style='mso-bookmark:ole_link2'><a name="_hlk11231759"><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>99.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xiaohan li, mengqi zhang, shu wu, zheng liu, liang wang, philip
s yu, dynamic graph collaborative filtering, proc. ieee international
conference on data mining, november 2020, sorento, italy.<o:p></o:p></span></a></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><span
style='mso-bookmark:ole_link2'><span style='mso-bookmark:_hlk11231759'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>100.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>yufeng zhang, xueli yu, zeyu cui,
shu wu, zhongzhen wen, liang wang, every document owns its structure:
inductive text classification via graph neural networks, proc. conference of
the association for computational linguistics, pp. 334-339, july 2020, los
angeles, usa.<o:p></o:p></span></span></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><span
style='mso-bookmark:ole_link2'><span style='mso-bookmark:_hlk11231759'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>101.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>yanqiao zhu, yichen xu, feng yu,
qiang liu, shu wu, and liang wang, deep graph contrastive representation
learning, proc. icml 2020 workshop on graph representation learning and
beyond, july 2020, vienna, austria.</span></span></span><span
style='mso-bookmark:ole_link2'><span lang=en-us style='font-size:12.0pt;
line-height:110%'><o:p></o:p></span></span></p>
<p class=af0><s><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p><span
style='text-decoration:none'> </span></o:p></span></s></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800756"></a><a
name="_toc24098157"></a><a name="_toc532562245"></a><a name="_toc532391214"><span
style='mso-bookmark:_toc532562245'><span style='mso-bookmark:_toc24098157'><span
style='mso-bookmark:_toc66800756'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>���{:g�vb_f[</span></b></span></span></span></a><a
name="_toc24465906"></a><a name="_toc24361014"></a><a name="_toc532562415"></a><span
style='mso-bookmark:_toc532562415'><span style='mso-bookmark:_toc24361014'><span
style='mso-bookmark:_toc24465906'><span style='mso-bookmark:_toc66800756'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>computer graphics</span></b></span></span></span></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>102.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>mingxin yang, jianwei
guo, juntao ye, xiaopeng zhang. (2020). detailed 3d face reconstruction from
single images via self-supervised attribute learning. in siggraph asia 2020
posters (pp. 1-2).<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>103.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zhongqi wu, chuanqing
zhuang, jun xiao, and jianwei guo. 2020. deep specular highlight removal for
single real-world image. in siggraph asia 2020 (sa 20 posters), december
04-13, 2020. acm, new york, ny, usa, 2 pages<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>104.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zeyu shen, mingyang
zhao, xiaohong jia, dong-ming yan. using convex hull for fast and accurate
ellipse detection, siggraph posters 2020 <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>105.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>youxin pang, mengke
yuan, qiang fu, dong-ming yan. reflection removal via realistic training data
generation, siggraph posters 2020<o:p></o:p></span></p>
<p class=af0><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800757"></a><a
name="_toc24098158"><span style='mso-bookmark:_toc66800757'><b><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>y�zso���{</span></b></span></a><a
name="_toc24465907"></a><a name="_toc24361015"></a><span style='mso-bookmark:
_toc24361015'><span style='mso-bookmark:_toc24465907'><span style='mso-bookmark:
_toc66800757'><b><span lang=en-us style='font-size:12.0pt;line-height:110%'>multimedia
computing</span></b></span></span></span><b><span lang=en-us
style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>106.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yingying deng, fan tang,
weiming dong, wen sun, feiyue huang, changsheng xu: arbitrary style transfer
via multi-adaptation network. acm multimedia 2020: 2719-2727<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>107.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>minxuan lin, yingying
deng, fan tang, weiming dong, changsheng xu:<span style='mso-spacerun:yes'>�
</span>multi-attribute guided painting generation. the 2nd ieee workshop on
artificial intelligence for art creation (aiart) 2020: 400-403<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>108.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yukun zuo, hantao yao,
changsheng xu: category-level adversarial self-ensembling for domain
adaptation. icme 2020: 1-6<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>109.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>shaobo min, hongtao xie,
hantao yao*, xuran deng, zheng-jun zha, yongdong zhang: hierarchical
granularity transfer learning. neurips 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>110.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>shaobo min, hantao yao,
hongtao xie, chaoqun wang, zheng-jun zha, yongdong zhang: domain-aware visual
bias eliminating for generalized zero-shot learning. cvpr 2020: 12661-12670<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>111.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yanfei han, quan fang,
jun hu, shengsheng qian, changsheng xu, gaeat: graph auto-encoder attention
networks for knowledge graph completion. cikm 2020: 2053-2056<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>112.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>chunyang li, zhineng
chen, caiyan jia, hongyun bao, changsheng xu, autosoccer: an automatic soccer
live broadcasting generator . icme workshops 2020: 1-2<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>113.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>youze wang, shengsheng
qian, jun hu, quan fang, changsheng xu, fake news detection via knowledge-driven
multimodal graph convolutional networks . icmr 2020: 540-547<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>114.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jun hu, quan fang,
shengsheng qian, changsheng xu, multi-modal attentive graph pooling model for
community question answer matching . acm multimedia 2020: 3505-3513<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>115.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yingying zhang, quan
fang, shengsheng qian, changsheng xu, multi-modal multi-relational feature
aggregation network for medical knowledge representation learning . acm
multimedia 2020: 3956-3965<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>116.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>chengpeng fu, jinqiang wang,
jitao sang, jian yu, changsheng xu, beyond literal visual modeling:
understanding image metaphor based on literal-implied concept mapping . mmm
(1) 2020: 111-123<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>117.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>chengcheng ma, weiliang meng,
baoyuan wu, shibiao xu and xiaopeng zhang. efficient joint gradient based
atack against sor defense for 3d point cloud classification. proceedings of
the 28th acm international conference on multimedia (mm 20). seattle,wa,usa.
acm 2020: 1819-1827.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>118.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yanyuan qiao, zheng yu,
jing liu: rankvqa: answer re-ranking for visual question answering. icme
2020: 1-6<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>119.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>lei shi, yifan zhang,
wanguo wang, jian cheng, hanqing lu: rethinking the pid optimizer for
stochastic optimization of deep networks. icme 2020: 1-6<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>120.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>linyu zheng, ming tang,
yingying chen, jinqiao wang, hanqing lu: high-speed and accurate scale
estimation for visual tracking with gaussian process regression. icme 2020:
1-6<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>121.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>fei liu, jing liu,
xinxin zhu, richang hong, hanqing lu: dual hierarchical temporal
convolutional network with qa-aware dynamic normalization for video story
question answering. acm multimedia 2020: 4253-4261<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>122.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>fei zhao, ting zhang,
chao ma, ming tang, jinqiao wang, xiaobo wang: siamese attentive graph
tracking. acm multimedia 2020: 1542-1550<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>123.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>xiaoqing liang, xu zhao,
chaoyang zhao, nanfei jiang, ming tang, jinqiao wang: task decoupled
knowledge distillation for lightweight face detectors. acm multimedia 2020:
2184-2192<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>124.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>longteng guo, jing liu,
xinxin zhu, xingjian he, jie jiang, hanqing lu: non-autoregressive image
captioning with counterfactuals-critical multi-agent learning. ijcai 2020:
767-773<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>125.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>kai niu, yan huang,
liang wang, textual dependency embedding for person search by language,
proc. acm multimedia conference, pp. 4032-4040, october 2020, seattle, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>126.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yifan song, zhang zhang,
caifeng shan, liang wang, stronger, faster and more explainable: a graph
convolutional baseline for skeleton-based action recognition, proc. acm
multimedia conference, pp. 1625 1633, october 2020, seattle, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>127.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>peipei li, yinglu liu,
hailin shi, xiang wu, yibo hu, ran he, zhenan sun, dual-structure
disentangling variational generation for data-limited face parsing, proc.
acm multimedia conference, pp. 556-564, october 2020, seattle, usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>128.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>boqiang xu, lingxiao he,
xingyu liao, wu liu, zhenan sun, tao mei, black re-id, a head-shoulder
descriptor for the challenging problem of person re-identification, proc.
acm multimedia conference, pp. 673-681, october 2020, seattle, usa.<o:p></o:p></span></p>
<p class=af0><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800758"></a><a
name="_toc24098159"></a><a name="_toc532562246"></a><a name="_toc532391215"><span
style='mso-bookmark:_toc532562246'><span style='mso-bookmark:_toc24098159'><span
style='mso-bookmark:_toc66800758'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�va�</span></b></span></span></span></a><span
style='mso-bookmark:_toc532391215'><span style='mso-bookmark:_toc532562246'><span
style='mso-bookmark:_toc24098159'><span style='mso-bookmark:_toc66800758'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>/</span></b></span></span></span></span><span
style='mso-bookmark:_toc532391215'><span style='mso-bookmark:_toc532562246'><span
style='mso-bookmark:_toc24098159'><span style='mso-bookmark:_toc66800758'><b><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>ɖ��ytnr�g</span></b></span></span></span></span><a
name="_toc24465908"></a><a name="_toc24361016"></a><a name="_toc532562416"></a><span
style='mso-bookmark:_toc532562416'><span style='mso-bookmark:_toc24361016'><span
style='mso-bookmark:_toc24465908'><span style='mso-bookmark:_toc66800758'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>image/video processing
and analysis</span></b></span></span></span></span><b><span lang=en-us
style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>129.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yingying zhang, junyu
gao, xiaoshan yang, chang liu, yan li, changsheng xu, find objects and focus
on highlights: mining object semantics for video highlight detection via
graph neural networks, aaai, pp. 12902-12909, new york, ny, usa, february
7-12, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>130.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>feifei zhang, mingliang
xu, qirong mao, changsheng xu, joint attribute manipulation and modality
alignment learning for composing text and image to image retrieval . acm
multimedia 2020: 3367-3376<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>131.</span></span><![endif]><span lang=en-us
style='font-size:12.0pt;line-height:110%'>jie jiang, jing liu, jun fu, xinxin
zhu, hanqing lu</span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>point set attention network for semantic segmentation. icip
2020: 2186-2190<o:p></o:p></span></p>
<p class=af0><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800759"></a><a
name="_toc24098160"></a><a name="_toc532562247"></a><a name="_toc532391216"><span
style='mso-bookmark:_toc532562247'><span style='mso-bookmark:_toc24098160'><span
style='mso-bookmark:_toc66800759'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>;sf[�va�r�g</span></b></span></span></span></a><a
name="_toc24465909"></a><a name="_toc24361017"></a><a name="_toc532562417"></a><span
style='mso-bookmark:_toc532562417'><span style='mso-bookmark:_toc24361017'><span
style='mso-bookmark:_toc24465909'><span style='mso-bookmark:_toc66800759'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>medical image analysis</span></b></span></span></span></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>132.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>shuang qiu, shengpei
wang, weibo yi, chuncheng zhang, huiguang he, changes of resting-state eeg
microstates induced by low-frequency repetitive transcranial magnetic
stimulation, ieee engineering in medicine and biology society , 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>133.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>chuncheng zhang,shuang
qiu,shengpei wang,wei wei,huiguang he, temporal dynamics on decoding target
stimuli in rapid serial visual presentation using magnetoencephalography,
ieee engineering in medicine and biology society ,2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>134.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yuanhao guo, fons j.
verbeek, ge yang, probabilistic inference for camera calibration in light
microscopy under circular motion, proc. ieee international symposium on
biomedical imaging (isbi), pp. 149-153, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>135.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>d. yao, j. sui, e. yang,
pt. yap, d. shen, and m. liu. temporal-adaptive graph convolutional network
for automated identification of major depressive disorder using resting-state
fmri. international workshop on machine learning in medical imaging, pp.
1-10, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>136.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>shuang gao, vince d.
calhoun, and jing sui, multi-modal component subspace-similarity-based
multi-kernel svm for schizophrenia classification, in medical imaging 2020:
computer-aided diagnosis, vol. 11314, proceedings of spie, h. k. hahn and m.
a. mazurowski eds., 2020.<o:p></o:p></span></p>
<p class=af0><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800760"><b><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>uir�va�r�g</span></b></a><span
style='mso-bookmark:_toc66800760'><b><span lang=en-us style='font-size:12.0pt;
line-height:110%'>biology image analysis</span></b></span><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>137.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-bidi-font-family:
"times new roman"'>yanan lv, xichen, chang shu, hua han. robust global
optimized affine registration method for microscopic images of biological
tissue, ieee international conference on acoustics, speech and signal processing
(icassp2020). 1070-1074, barcelona, spain, may 4-8 2020.<o:p></o:p></span></p>
<p class=af0><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></p>
<p class=af0 style='mso-outline-level:3'><a name="_toc66800761"></a><a
name="_toc24098161"></a><a name="_toc532562248"></a><a name="_toc532391217"><span
style='mso-bookmark:_toc532562248'><span style='mso-bookmark:_toc24098161'><span
style='mso-bookmark:_toc66800761'><b><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�����b/g</span></b></span></span></span></a><a
name="_toc24465910"></a><a name="_toc24361018"></a><a name="_toc532562418"></a><span
style='mso-bookmark:_toc532562418'><span style='mso-bookmark:_toc24361018'><span
style='mso-bookmark:_toc24465910'><span style='mso-bookmark:_toc66800761'><b><span
lang=en-us style='font-size:12.0pt;line-height:110%'>speech and language
technology</span></b></span></span></span></span><b><span lang=en-us
style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>138.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>haoran li, junnan zhu,
jiajun zhang, chengqing zong and xiaodong he. keywords-guided abstractive
sentence summarization. the thirty-fourth aaai conference on artificial
intelligence (aaai), new york, usa, feb. 7-12, 2020, pp. 8196-8203<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>139.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yuchen liu, jiajun
zhang, hao xiong, long zhou, zhongjun he, hua wu, haifeng wang and chengqing
zong. synchronous speech recognition and speech-to-text translation with interactive
decoding. the thirty-fourth aaai conference on artificial intelligence
(aaai), new york, usa, feb. 7-12, 2020, pp. 8417-8424<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>140.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>shaonan wang, jiajun
zhang, nan lin and chengqing zong. probing brain activation patterns by
dissociating semantics and syntax in sentences. the thirty-fourth aaai
conference on artificial intelligence (aaai), new york, usa, feb. 7-12, 2020,
pp. 9201-9208<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>141.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>junnan zhu, yu zhou,
jiajun zhang, haoran li, chengqing zong and changliang li. multimodal
summarization with guidance of multimodal reference. the thirty-fourth aaai
conference on artificial intelligence (aaai), new york, usa, feb. 7-12, 2020,
pp. 9749-9756<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>142.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yang zhao, jiajun zhang,
yu zhou and chengqing zong. knowledge graphs enhanced neural machine
translation. the 29th international joint conference on artificial
intelligence and the 17th pacific rim international conference on artificial
intelligence (ijcai-pricai 2020), yokohama, japan, july 11-17, 2020, pp.
4039-4045<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>143.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>junnan zhu, yu zhou,
jiajun zhang, and chengqing zong. attend, translate and summarize: an
efficient method for neural cross-lingual summarization. in proceedings of
the 58th annual meeting of the association for computational linguistics
(acl), online, july 5-july 10, 2020, pp. 1309-1321.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>144.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>xiaomian kang, yang
zhao, jiajun zhang and chengqing zong. dynamic context selection for
document-level neural machine translation via reinforcement learning. in
proceedings of the 2020 conference on empirical methods in natural language
processing (emnlp), november 16th 20th, 2020, pp. 2242-2254<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>145.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jinghui yan, yining
wang, lu xiang, yu zhou and chengqing zong, a knowledge-driven generative
model for multi-implication chinese medical procedure entity normalization.
in proceedings of the 2020 conference on empirical methods in natural
language processing (emnlp), november 16th 20th, 2020, pp. 1-11, pp.
1490-1499<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>146.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yang zhao, lu xiang,
junnan zhu, jiajun zhang, yu zhou and chengqing zong. knowledge graph
enhanced neural machine translation via multi-task learning on sub-entity
granularity. proceedings of 28th international conference on computational
linguistics (coling 2020), barcelona, spain (online), december 8-13, 2020,
pp. 4495 4505.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>147.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jian sun, yu zhou,
chengqing zong. dual attention network for cross-lingual entity alignment.
the 28th international conference on computational linguistics (coling 2020),
barcelona, spain (online), december 8-13, 2020, pp. 3190-3201<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>148.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jingyuan sun, shaonan
wang, jiajun zhang, and chengqing zong. distill and replay for continual
language learning.the 28th international conference on computational
linguistics (coling 2020), online, december 8-13, 2020, pp. 3569-3579<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>149.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>qian wang, jiajun zhang,
lemao liu, guoping huang and chengqing zong, touch editing: a flexible
one-time interaction approach for translation. in proceedings of the 1st
conference of the asia-pacific chapter of the association for computational
linguistics (aacl) and the 10th international joint conference on natural
language processing (ijcnlp), december 4 7, 2020, pp. 1-11<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>150.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zhengkun tian, jiangyan
yi, ye bai, jianhua tao, shuai zhang, zhengqi wen, synchronous transformers
for end-to-end speech recognition, icassp 2020, 7884-7888, may 4-8,2020
barcelona, spain.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>151.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>ruibo fu</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jianhua tao</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zhengqi wen</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jiangyan yi</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>tao wang, focusing on attention:
prosody transfer and adaptative optimization strategy for multi-speaker
end-to-end speech synthesis, icassp 2020, 6709-6713, may 4-8,2020 barcelona,
spain.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>152.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jian huang,jianhua
tao,bin liu,zheng lian,mingyue niu, multimodal transformer fusion for continuous
emotion recognition, icassp 2020, 3507-3511, may 4-8,2020 barcelona, spain.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>153.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>donna erickson, shigeto
kawahara, albert rilliard, ryoko hayashi, toshiyuki sadanobu, yongwei li,
hayato daikuhara, jo�o de moraes, kerrie obert, cross cultural differences
in arousal and valence perceptions of voice quality, 10th international
conference on speech prosody, pp.720-724, tokyo, japan, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>154.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>feihu che</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>dawei zhang, jianhua
tao, mingyue niu,bocheng zhao, parame: regarding neural network parameters as
relation embeddings for knowledge graph completion, aaai-2020, 2774-2781, new
york, usa, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>155.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>licai sun, zheng lian,
bin liu,jianhua tao,mingyue niu, multi-modal continuous dimensional emotion
recognition, 1st international multimodal sentiment analysis in real-life
media challenge and workshop (muse2020), 27-34, october 12 16, 2020, seattle,
usa.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>156.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>cunhang fan, jianhua
tao, bin liu, jiangyan yi and zhengqi wen, gated recurrent fusion of spatial
and spectral features for multi-channel speech separation with deep embedding
representations, interspeech 2020, pp. 3321-3325, shanghai, china, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>157.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>cunhang fan, jianhua
tao, bin liu, jiangyan yi and zhengqi wen, joint training for simultaneous
speech denoising and dereverberation with deep embedding representations,
interspeech 2020, pp. 4536-4540, shanghai, china, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>158.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>ye bai, jiangyan yi,
jianhua tao, zhengkun tian, zhengqi wen, shuai zhang, listen attentively, and
spell once: whole sentence generation via a non-autoregressive architecture
for low-latency speech recognition. proc. interspeech 2020, 3381-3385,
shanghai, china, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>159.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>yongwei li, jianhua tao,
bin liu, donna erickson, masato akagi, comparison of glottal source parameter
values in emotional vowels, interspeech, pp. 4103-4107, shanghai, china,
2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>160.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zhengkun tian, jiangyan
yi, jianhua tao, ye bai, shuai zhang, zhengqi wen, spike-triggered
non-autoregressive transformer for end-to-end speech recognition, interspeech
2020, 4395-4399, shanghai, china, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>161.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>ruibo fu, jianhua tao,
zhengqi wen , jiangyan yi, chunyu qiang, tao wang, dynamic soft windowing and
language dependent style token for code-switching end-to-end speech
synthesis, interspeech 2020, 2937-2941, shanghai, china, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>162.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jiangyan yi, jianhua
tao, zhengkun tian, ye bai, cunhang fan, focal loss for punctuation
prediction, interspeech 2020, 721-725, shanghai, china, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>163.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>tao wang, jianhua tao,
ruibo fu, jiangyan yi, zhengqi wen, spoken content and voice factorization
for few-shot speaker adaptation, interspeech 2020, 796-800, shanghai, china,
2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>164.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>tao wang, xuefei liu,
jianhua tao, jiangyan yi, ruibo fu, zhengqi wen, non-autoregressive
end-to-end tts with coarse-to-fine decoding, interspeech 2020, 3984-3988,
shanghai, china, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>165.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>tao wang, jianhua tao,
ruibo fu, jiangyan yi, zhengqi wen, chunyu qiang, bi-level speaker
supervision for one-shot speech synthesis, interspeech 2020, 3989-3993,
shanghai, china, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>166.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>jian huang,jianhua
tao,bin liu,zheng lian, learning utterance-level representations with label
smoothing for speech, interspeech 2020, 4079-4083, shanghai, china, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>167.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zheng lian, jianhua tao,
bin liu, jian huang, zhanlei yang, rongjun li, context-dependent domain
adversarial neural network for multimodal emotion recognition, interspeech
2020, 394-398, shanghai, china, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>168.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zheng lian, jianhua tao,
bin liu, jian huang, zhanlei yang, rongjun li, conversational emotion
recognition using self-attention mechanisms and graph neural networks,
interspeech 2020, 2347-2351, shanghai, china, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>169.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zheng lian, zhengqi wen,
xinyong zhou , songbai pu , shengkai zhang</span><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>jianhua tao, arvc: an
auto-regressive voice conversion system without parallel training data,
interspeech 2020, 4706-4710, shanghai, china, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>170.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>ziping zhao , qifei li ,
nicholas cummins, bin liu,<span style='mso-spacerun:yes'>� </span>haishuai
wang, jianhua tao, bj�orn w. schuller, hybrid network feature extraction for
depression assessment from speech, interspeech 2020, 4956-4960, shanghai,
china, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>171.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>ruibo fu, jianhua tao,
zhengqi wen , jiangyan yi, tao wang, chunyu qiang, dynamic speaker
representations adjustment and decoder factorization for speaker adaptation
in end-to-end speech synthesis, interspeech 2020, 4701-4705, shanghai, china,
2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>172.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>guanjun li, shan liang,
shuai nie, wenju liu, zhanlei yang, longshuai xiao. deep neural network-based
generalized sidelobe canceller for robust multi-channel speech recognition.
interspeech 2020, shang hai, china, october. 25-october. 29, 2020, pp.51-55.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8;
tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us
style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:"times new roman";
mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>173.</span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>guanjun li, shan liang,
shuai nie, wenju liu, zhanlei yang, longshuai xiao. microphone array
post-filter for target speech enhancementwithout a prior information of point
interferers. interspeech 2020, shang hai, china, october 25-october. 29,
2020, pp. 3306-3310.<o:p></o:p></span></p>
<p class=af0><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></p>
<p class=af0 style='mso-outline-level:2'><a name="_toc66800762"></a><a
name="_toc24098162"></a><a name="_toc532562249"></a><a name="_toc532391218"><span
style='mso-bookmark:_toc532562249'><span style='mso-bookmark:_toc24098162'><span
style='mso-bookmark:_toc66800762'><b style='mso-bidi-font-weight:normal'><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�v�qo��</span></b></span></span></span></a><a
name="_toc24465911"></a><a name="_toc24361019"></a><a name="_toc532562419"></a><span
style='mso-bookmark:_toc532562419'><span style='mso-bookmark:_toc24361019'><span
style='mso-bookmark:_toc24465911'><span style='mso-bookmark:_toc66800762'><b
style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt;
line-height:110%'>national conference</span></b></span></span></span></span><span
style='mso-bookmark:_toc24465911'><span style='mso-bookmark:_toc66800762'><b
style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt;
line-height:110%'>s</span></b></span></span><b style='mso-bidi-font-weight:
normal'><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l7 level1 lfo10'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>ke tian and jiajun zhang. quality estimation for machine
translation with multi-granularity interaction. the 16th china conference on
machine translation. springer, singapore, october 11, 2020, pp. 1-11<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>2.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xinyu zuo, yubo chen, kang liu and jun zhao, towards causal
explanation detection with pyramid salient-aware network<span
style='mso-tab-count:1'> </span>the 19th china national conference on
computational linguistics (ccl 2020), 904-915, online,10.30-11.1,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>3.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>pengfei cao, yubo chen, kang liu, jun zhao,chinese named
entity recognition via adaptive multi-pass memory network with hierarchical
tagging mechanism,the 19th china national conference on computational
linguistics (ccl 2020),144-158,online,10.30-11.1,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>4.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>zhucong li, baoli zhang, yubo chen, kang liu, jun zhao and
shengping liu,multi-specialty domain adaptation for chinese medical named
entity recognition<span style='mso-tab-count:1'>������ </span>china
conference on knowledge graph and semantic computing(ccks 2020</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'> �</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>,nanchang,11.12-11.15,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>5.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�u\b��[:c�uon�g�r�^�u��q�rgss^</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>,</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�w�n�r`�wƌ ��b�v�����~!j�w</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>, </span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>hq�v�wƌ�v1�n�in���{'yo</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>(ccks 2020</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'> �</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>,</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>-n�vwsf</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>,11.12-11.15,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>6.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>hang yang, yubo chen, kang liu, and jun zhao<span
style='mso-tab-count:1'>����� </span>,meta learning for event argument
extraction via domain-specific information enhanced,china conference on
knowledge graph and semantic computing(ccks 2020</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'> �</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>,
nanchang,11.12-11.15,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>7.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�[:c��u\b�uon�g�r�^�u��q�rgss^</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>,</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�w�n�r`͋n��c�v�sp[9sm������~!j�w</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>,</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>hq�v�wƌ�v1�n�in���{'yo</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>(ccks 2020</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'> �</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>,</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>-n�vwsf</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>,11.12-11.15,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>8.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�s^ey�uon�g�r�^�yock�m�ؚ�vey�퐛q�q</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>,</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>��t�n�[�e,g�v�wƌ�^�t{�e�lxvz</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>,</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>hq�v�wƌ�v1�n�in���{'yo</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>(ccks 2020</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'> �</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>,</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>-n�vwsf</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>,11.12-11.15,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>9.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yinyu lan, shizhu he, kang liu, jun zhao, xiangrong zeng,
shengping liu,path-based knowledge reasoning with textual semantic
information for medical knowledge graph completion,the china conference on
health information processing (chip 2020)<span style='mso-tab-count:1'>���� </span>,luzhou(online</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'> �</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>,11.28-11.29,2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>10.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>cheng yan,yuanzhe zhang,kang liu,jun zhao,yafei
shi,shengping liu,enhancing unsupervised medical entity linking with
multi-instance learning,the china conference on health information processing
(chip 2020),luzhou(online</span><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'> �</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>,11.28-11.29,2020<o:p></o:p></span></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l7 level1 lfo10'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman";color:black;
mso-themecolor:text1'><span style='mso-list:ignore'>11.<span
style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-bidi-font-family:
"times new roman";color:black;mso-themecolor:text1'>jianhua yang, yan huang,
linjiang huang, yunbo wang, zhanyu ma, liang wang, global context enhanced
multi-modal fusion for referring image segmentation, proc. chinese
conference on pattern recognition and computer vision, pp. 434-446, october
2020, nanjing, china.<o:p></o:p></span></p>
<p class=af0><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></p>
<p class=af0 style='mso-outline-level:2'><a name="_toc66800763"></a><a
name="_toc24098163"></a><a name="_toc532562250"></a><a name="_toc532391219"><span
style='mso-bookmark:_toc532562250'><span style='mso-bookmark:_toc24098163'><span
style='mso-bookmark:_toc66800763'><b style='mso-bidi-font-weight:normal'><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>_>e�����[�^�sh����e</span></b></span></span></span></a><a
name="_toc24465912"></a><span style='mso-bookmark:_toc24465912'><span
style='mso-bookmark:_toc66800763'><b style='mso-bidi-font-weight:normal'><span
lang=en-us style='font-size:12.0pt;line-height:110%'>publications of external
projects</span></b></span></span><b style='mso-bidi-font-weight:normal'><span
lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=af0><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p> </o:p></span></p>
<p class=af0 style='mso-outline-level:2'><a name="_toc66800764"></a><a
name="_toc24098164"></a><a name="_toc532562251"></a><a name="_toc532391220"><span
style='mso-bookmark:_toc532562251'><span style='mso-bookmark:_toc24098164'><span
style='mso-bookmark:_toc66800764'><b style='mso-bidi-font-weight:normal'><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�ve�
rir</span></b></span></span></span></a><a
name="_toc24465913"></a><a name="_toc24361021"></a><a name="_toc532562421"></a><span
style='mso-bookmark:_toc532562421'><span style='mso-bookmark:_toc24361021'><span
style='mso-bookmark:_toc24465913'><span style='mso-bookmark:_toc66800764'><b
style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt;
line-height:110%'>international journals</span></b></span></span></span></span><b
style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt;
line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>shiming ge, chunhui zhang, shikun li, dan zeng, and dacheng
tao. cascaded correlation refinement for robust deep tracking. ieee transactions
on neural networks and learning systems (tnnls), 2020, 1-13.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>2.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>shiming ge, chenyu li, shengwei zhao, and dan zeng.
occluded face recognition in the wild by identity-diversity inpainting. ieee
transactions on circuits and systems for video technology (tcsvt), 2020,
3387-3397. <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>3.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>congqi cao, jiakang li, runping xi and yanningzhang, club
ideas and exertions: aggregating local predictions for action recognition, in
ieee transactions on circuits and systems for video technology, 2020. doi:
10.1109/tcsvt.2020.3017203.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>4.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>qian sun, qiaojun li, lei chen, jianning quan, lvjie li,
pattern recognition based on pulse scanning imaging and convolutional neural
network for vibrational events in �-otdr, optik, vol. 219, no. june, pp.
165205, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>5.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>chen shanxiong, han xu, gao weizhe, liu xuxin, mo bofeng, a
classification method of oracle materials based on local convolutional neural
network framework, ieee computer graphics and applications, vol. 40, no.3,
pp. 32-44, 2020. <o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>6.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>shiyu zhu, chen shanxiong, xihua peng, hailing xiong, a
signal reconstruction method of wireless sensor network based on compressed
sensing, eurasip journal on wireless communications and networking, vol. 4,
no 1, pp. 1-27, 2020. (sci)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>7.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>wen-ze shao*, yuan-yuan liu, lu-yue ye, li-qian wang, qi
ge, bing-kun bao, hai-bo li. deblurgan : revisiting blind motion deblurring
using conditional adversarial networks[j]. signal processing, 2020, 168:
107338. (sci)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>8.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xiang-jun shen*, si-xing liu, bing-kun bao, chunhong pan,
zheng-jun zha, jianping fan. a generalized least-squares approach regularized
with graph embedding for dimensionality reduction[j]. pattern recognition,
2020, 98: 107023. (sci)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>9.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xi shao, xuan zhang, guijin tang, bingkun bao*. scene
recognition based on recurrent memorized attention network[j]. electronics,
2020, 9(12): 2038. (sci)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>10.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>x. liao*, k. li, x. zhu, k. j. ray liu. robust detection of
image operator chain with two-stream convolutional neural network[j]. ieee
journal of selected topics in signal processing, 14(5): 955-968, 2020. [</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�o�syt���w</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>top</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>g
r</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>, </span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>-n�yb�n:s</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>]<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>11.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>x. liao*, j. yin, m. chen, z. qin. adaptive payload
distribution in multiple images steganography based on image texture
features[j]. ieee transactions on dependable and secure computing, doi:
10.1109/tdsc.2020.3004708, 2020. [</span><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�oo`�[hq���w</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>top</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>g
r</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>, ccf</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�cp�</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>a</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>{|g
r</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>]<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>12.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>x. liao*, y. yu, b. li, z. li, z. qin. a new payload
partition strategy in color image steganography[j]. ieee transactions on
circuits and systems for video technology, 30(3): 685-696, 2020. [</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>y�zso���wcgzg
r</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>, </span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>eq �</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>esi</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>ؚ��_�p�p���e</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>]<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>13.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>j. yang, x. liao*. an embedding strategy on fusing multiple
image features for data hiding in multiple images[j]. journal of visual
communication and image representation, 71: 102822-102827, 2020. [sci, if:
2.479]<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>14.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>l. peng, x. liao*, m. chen. resampling parameter estimation
via dual-filtering based convolutional neural network[j]. multimedia systems,
doi: 10.1007/s00530-020-00697-y, 2020. [sci, if: 1.563]<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>15.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xiaoke hao, yongjin bao, yingchun guo, ming yu, daoqiang
zhang, shannon l. risacher, andrew j. saykin, xiaohui yao, li shen, and for
the alzheimer s disease neuroimaging initiative, multi-modal neuroimaging
feature selection with consistent metric constraint for diagnosis of
alzheimer's disease, medical image analysis, vol. 60, no. 101625, pp. 1-13,
2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>16.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>baiying lei, yujia zhao, zhongwei huang, xiaoke hao, feng
zhoud, ahmed elazaba, jing qin, haijun lei, adaptive sparse learning using
multi-template for neurodegenerative disease diagnosis, medical image
analysis, vol. 61, no. 101632, pp. 1-13, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>17.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>aihua zheng, hongchao li, bo jiang, wei-shi zheng, bin luo.
joint graph regularized dictionary learning and sparse ranking for
multi-modal multi-shot person re-identification. pattern recognition,
vol.104, 2020: 107352. (sci </span><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�n:s</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>18.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>aihua zheng, xianmin lin, jiacheng dong, wenzhong wang, jin
tang, bin luo.multi-scale attention vehicle re-identification. neural
computing and applications, vol.32, pp. 17489-17503, 2020. (sci </span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�n:s</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>19.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>aihua zheng, naipeng ye, chenglong li*, xiaowang, jin tang.
multi-modal foreground detection via inter- and intra-modality-consistent
low-rank separation. neurocomputing, vol.371, pp. 27-38, 2020. (sci </span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�n:s</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>20.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>cairong zhao, xinbi lv, zhang zhang, wangmeng zuo, jun wu
and duoqian miao, deep fusion feature representation learning with hard
mining center-triplet loss for person re-identification, ieee transactions on
multimedia, 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>21.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>zhenbing zhao, hongyu qi, yincheng qi, ke zhang, yongjie
zhai, wenqing zhao. detection method based on automatic visual shape
clustering for pin-missing defect in transmission lines[j]. ieee transactions
on instrumentation and measurement, 2020, 69(9): 6080-6091. (sci 2</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>:s</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>: 000559518800016)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>22.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>zhenbing zhao, hongyu qi, xiaoqing fan, guozhi xu, yincheng
qi, yongjie zhai, ke zhang. image representation method based on relative
layer entropy for insulator recognition[j]. entropy, 2020, 22, 419;
doi:10.3390/e22040419. (sci 3</span><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>:s</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>: 000537222600005)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>23.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yun-peng xiao, yu-kun lai, fang-lue zhang, chunpeng li, lin
gao. a survey on deep geometry learning: from a representation perspective.
computational visual media, 2020, 6(2): 113-133.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>24.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>shuang liu, linlin duan, zhong zhang*, xiaozhong cao, tariq
s. durrani, multimodal ground-based remote sensing cloud classification via
learning heterogeneous deep features, ieee transactions on geoscience and
remote sensing, vol. 58, no. 11, pp. 7790-7800, nov. 2020<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>25.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>shuang liu, mei li, zhong zhang*, xiaozhong cao, tariq s.
durrani, ground-based cloud classification using task-based graph
convolutional network, geophysical research letters, 47(5), e2020gl087338,
2020;<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>26.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>shuang liu, mei li, zhong zhang*, baihua xiao, tariq s.
durrani, multi-evidence and multi-modal fusion network for ground-based
cloud recognition, remote sensing. 2020, 12(3), 464;<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>27.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>shuang liu, xiaolong hao, ronghua zhang, zhong zhang*,
tariq s. durrani, adversarial erasing attention for person re-identification
in camera networks under complex environments, ieee access, vol. 8, no. 1,
pp. 56469-56479, 2020;<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>28.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>tian q, sun h, ma c, et al. age estimation via selecting discriminated
features and preserving geometry. ksii transactions on internet and
information systems, 2020, 14(4): 1721-1737.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>29.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>tian q, zhang w, cao m, et al. moment-guided discriminative
manifold correlation learning on ordinal data. acm transactions on intelligent
systems and technology, 2020, 11(5): 1-18.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>30.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xiang gao, jiazheng luo, kunqian li, zexiao xie,
hierarchical ransac-based rotation averaging, ieee signal processing letters,
vol. 27, pp. 1874-1878, 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l1 level1 lfo12'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>31.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>qinqin zhou, bineng zhong*, xiangyuan lan, gan sun, yulun
zhang, baochang zhang, rongrong ji. fine-grained spatial alignment model for
person re-identification with focal triplet loss. ieee transactions on image
processing, vol.29, no.6, pp.7578-7589, 2020.<o:p></o:p></span></p>
<p class=af0 style='mso-outline-level:2'><a name="_toc66800765"></a><a
name="_toc24098165"></a><a name="_toc532562252"></a><a name="_toc532391221"><span
style='mso-bookmark:_toc532562252'><span style='mso-bookmark:_toc24098165'><span
style='mso-bookmark:_toc66800765'><b style='mso-bidi-font-weight:normal'><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�v�q
rir</span></b></span></span></span></a><a
name="_toc24465914"></a><a name="_toc24361022"></a><a name="_toc532562422"></a><span
style='mso-bookmark:_toc532562422'><span style='mso-bookmark:_toc24361022'><span
style='mso-bookmark:_toc24465914'><span style='mso-bookmark:_toc66800765'><b
style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt;
line-height:110%'>national journals</span></b></span></span></span></span><b
style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt;
line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo14'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>0uvt3t</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>h��uė</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>u��[so</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�g\n</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�qwmup</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>kb�qsohrb�r�g�tyθ<span lang=en-us style='font-size:
12.0pt;line-height:110%'>, </span><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>���{:g���r����n�vb_f[f[�b</span><span lang=en-us style='font-size:
12.0pt;line-height:110%'>, 32(7):1111-1200, 2020. (ei)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo14'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>2.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>h��uė</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>1gn�[</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>u��[so</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�s�[�e</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>r�n</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�qwmup</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>n�y�s$r rhvub�[�bq�~�v�s]_�e�o
y�e�l</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>, </span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>ꁨrsf[�b</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>, 2020. (ei)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo14'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>3.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>h��uė</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>��e</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�g\n</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>r�n</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�sf5�</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�w�n</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>mser</span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�t</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>cnn</span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�v]_�e�sm|�e.s�vw[&{�hkm�e�l</span><span lang=en-us style='font-size:
12.0pt;line-height:110%'>, </span><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>nswst�]'yf[f[�b</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, 48 (6): 123-133, 2020. (ei)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo14'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>4.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�l�q</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�^k�</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>*, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�y�b</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>r�~]</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>. </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�w�nws�y^y�~q�~�vnol]eq�szz�w���qr�g�e�l</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>[j]. </span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>o��nf[�b</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>, doi: 10.13328/j.cnki.jos.005980,
2020. [ccf</span><span style='font-size:12.0pt;line-height:110%;font-family:
�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'>�cp��v�qg
r�c
t,{</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>1]<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo14'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>5.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>zhao k, ding y, han y, fan y, alexander-bloch af, han t,
jin d, liu b, lu j, song c, wang p, wang d, wang q, xu k, yang h, yao h,
zheng y, yu c, zhou b, zhang x, zhou y, jiang t, zhang x, liu y. 2020.
independent and reproducible hippocampal radiomic biomarkers for multisite
alzheimer s disease: diagnosis, longitudinal progress and biological basis.
science bulletin. 65:1103-1113.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo14'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>6.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>ѐ1rns</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�f\:_</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>_l�l</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>ğ�\</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>dlۏ</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>. </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�w�n@\�_(�ost�s�q�~�v�!j`l��n͑ƌ r</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>.</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>!j_ƌ rn�n�]zf��</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>, 2020, 33(10): 867-878. (ei</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>��v�qcgzg
r</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo14'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>7.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>u�/cuq��8lpg� _�s�t[�o�u��en�b���w�b�<span lang=en-us
style='font-size:12.0pt;line-height:110%'>. </span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>5u�rɖɉ�b/g</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>[m]. </span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>-n�v5u�r�qhr>y�</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo14'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>8.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>u�/cuq�_l1r��b���w� _���u��en</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>. </span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>l]eqn�!csq�|!jww�v</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>ssd</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>!j�w�v��5u�~��v�pёwq�hkm</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>[j]. </span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>zf���|�~f[�b�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>2020, 15(4): 656-662. (</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>n�~f[�b</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo14'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>9.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>u�/cuq�ng�^�e�u�s��8lpg� _�s�u��en</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>. </span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�~t</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>kl</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>ce�^�tb_�r�~_g�v</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>faster r-cnn</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>xq�wёwq�hkm�e�l</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>[j]. </span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>ؚ5u�s�b/g</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>, 2020, 46(9): 3018-3026.
(ei: 20204409425713)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo14'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>10.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>u�/cuq�ng�^�e�b���w�t[�o�b�<span lang=en-us
style='font-size:12.0pt;line-height:110%'>. </span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�w�n�r`&q�p_c1y�qpe�t7h,gs^a��e�l�v�~p[:w��hkm�e�l</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>[j]. </span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>5u�rꁨrs��y�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>2020, 40(10): 205-211.
(ei: 20204509448008)<o:p></o:p></span></p>
<p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo14'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>11.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>u�/cuq</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'> _��</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�8lpg</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>, </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>i{</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>. </span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>5u�rɖɉ�b/g�v�i�_0xvz�s�rnu\g</span><span lang=en-us style='font-size:
12.0pt;line-height:110%'>[j]. </span><span style='font-size:12.0pt;
line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>5u�r�yf[n�]z</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>, 2020, 36(01): 1-8.<o:p></o:p></span></p>
<p class=af0 style='mso-outline-level:2'><a name="_toc66800766"></a><a
name="_toc24098166"></a><a name="_toc532562253"></a><a name="_toc532391222"><span
style='mso-bookmark:_toc532562253'><span style='mso-bookmark:_toc24098166'><span
style='mso-bookmark:_toc66800766'><b style='mso-bidi-font-weight:normal'><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�ve�o��</span></b></span></span></span></a><a
name="_toc24465915"></a><a name="_toc24361023"></a><a name="_toc532562423"></a><span
style='mso-bookmark:_toc532562423'><span style='mso-bookmark:_toc24361023'><span
style='mso-bookmark:_toc24465915'><span style='mso-bookmark:_toc66800766'><b
style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt;
line-height:110%'>international conferences</span></b></span></span></span></span><b
style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt;
line-height:110%'><o:p></o:p></span></b></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>tianzhe wang, zetian jiang, junchi yan </span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>���\o�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>, clustering-aware
multiple graph matching via decayed pairwise matching composition, aaai 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>2.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>shiming ge, kangkai zhang, haolin liu, et al. look one and
more: distilling hybrid order relational knowledge for cross-resolution image
recognition. in aaai conference on artificial intelligence (aaai) , 2020:
10845-10852.<o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>3.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>ke cheng, yifan zhang, congqi cao, lei shi, jian cheng, and
hanqing lu, decoupling gcn with dropgraph module for skeleton-based action
recognition, in european conference on computer vision(eccv), 2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>4.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>xu han, shanxiong chen, shiyu zhu, xiaoyu lin, fujia zhao,
dingwang wang, a character detection method for ancient yi books based on
connected components and regressive character segmentation, international
conference on automated planning and scheduling 2020, 2</span><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-bidi-font-family:
"times new roman"'>020</span><span style='font-size:12.0pt;line-height:110%;
font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'>�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-bidi-font-family:
"times new roman"'>13(11)</span><span style='font-size:12.0pt;line-height:
110%;font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:
"times new roman"'>�</span><span lang=en-us style='font-size:12.0pt;
line-height:110%'>55-68. <o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>5.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>yaolin tian, shanxiong chen, fujia zhao, xiaoyu lin,
hailing xiong, the layout analysis of handwriting characters and the fusion
of multi-style ancient books background, international conference on
automated planning and scheduling 2020, 2020</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>�</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>13(11)</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>111-123.<o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>6.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>gehan hao, yang yang, xue zhou*, guanan wang, and zhen lei,
horizontal flipping assisted disentangled feature learning for
semi-supervised person re-identification, accepted to asia conference on
computer vision (accv),2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>7.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>kexin chen, xue zhou*, chao liang and jianxiao zou,
bidirectional consistency constrained template update learning for siamese
trackers, accepted to ieee international conference on visual communications
and image processing(vcip),2020.<o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>8.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>x. liao*, z. huang. a framework for parameters estimation
of image operator chain[c]. ieee international conference on acoustics,
speech and signal processing (icassp), 2787-2791, 2020. [</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�o�syt�s�^(u�eb�gwqq_�t�r�v�ve��e0�o��</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>, ccf</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�cp�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>b</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>{|o��</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>]<o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>9.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>j. lin and l. dai, x-net for single image raindrop
removal, in 2020 ieee international conference on image processing (icip),
abu dhabi, united arab emirates, oct. 2020, pp. 1003 1007, doi: 10/ghmtnz.<o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>10.<span style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>hongchao li, chenglong
li, xianpeng zhu, aihua zheng*, bin luo. multi-spectral vehicle
re-identification: a challenge: the thirty-fourth aaai conference on
artificial intelligence(aaai) (2020), pp: 11345-11353, 2020, new york, usa.
(ccf</span><span style='font-size:12.0pt;line-height:110%;font-family:�[so;
mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'>�cp�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>a</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>{|�ve�o��</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>)<o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>11.<span style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>hao zhu, huaibo huang, yi
li, aihua zheng and ran he*. arbitrary talking face generation via
attentional audio-visual coherence learning: international joint conference
on artificial intelligence (ijcai) (2020), pp:2362-2368, 2020, yokohama,
japan. (ccf</span><span style='font-size:12.0pt;line-height:110%;font-family:
�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'>�cp�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>a</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>{|�ve�o��</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>)<o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>12.<span style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>xianmin lin, shengwang
peng, zhiqi ma, xiaoyi zhou and aihua zheng*. occlusion based discriminative
feature mining for vehicle re-identification: international conference of
pioneering computer scientists, engineers and educators. (icpcsee) (2020),
pp: 246-257, 2020, springer, singapore. (ei)<o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>13.<span style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>shu-yu chen, wanchao su,
lin gao, shihong xia, hongbo fu. deepfacedrawing: deep generation of face
images from sketches. acm transactions on graphics (siggraph 2020), 2020,
39(4), 72:1-72:16.<o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>14.<span style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zedu chen, bineng
zhong*, guorong li, shengping zhang, rongrong ji. siamese box adaptive
network for visual tracking. 2020 ieee international conference on computer
vision and pattern recognition, (cvpr) (2020), pp:6668:6677, 2020, seattle
washington, usa<o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>15.<span style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>zhihui wang, bing bai,
yujun xie, tengfei xing, bineng zhong</span><span lang=en-us
style='font-size:12.0pt;line-height:110%;font-family:"cambria math",serif;
mso-bidi-font-family:"cambria math"'>"</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>(</span><span style='font-size:
12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:"times new roman";
mso-hansi-font-family:"times new roman"'>���\o�</span><span lang=en-us
style='font-size:12.0pt;line-height:110%'>), qinqin zhou, yiping meng, bin
xu, zhichao song, pengfei xu, runbo hu, hua chai. robust and fast vehicle
turn-counts at intersections via an integrated solution from detection,
tracking and trajectory modeling. ai city challenge</span><span
style='font-size:12.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family:
"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span
lang=en-us style='font-size:12.0pt;line-height:110%'>cvpr 2020 workshop.<o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>16.<span style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>guibiao liao, wei gao*,
qiuping jiang, ronggang wang, ge li, mmnet: multi-stage and multi-scale
fusion network for rgb-d salient object detection , acm international
conference on multimedia, seattle, wa, usa, 2020. (*corresponding author) <o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>17.<span style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>wei gao*, lvfang tao,
linjie zhou, dinghao yang, xiaoyu zhang, zixuan guo, low-rate image
compression with super-resolution learning, ieee/cvf conference on computer
vision and pattern recognition (cvpr) workshops, seattle, wa, usa, 2020, pp.
154-155. <o:p></o:p></span></p>
<p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>18.<span style='font:7.0pt "times new roman"'> </span></span></span><![endif]><span
lang=en-us style='font-size:12.0pt;line-height:110%'>wei gao*, on the
performance evaluation of state-of-the-art rate control algorithms for
practical video coding and transmission systems , international conference on
video and image processing (icvip), xi an, china, dec. 25-27, 2020.<o:p></o:p></span></p>
<p class=af0 style='mso-outline-level:2'><a name="_toc66800767"></a><a
name="_toc24098167"></a><a name="_toc532562254"><span style='mso-bookmark:
_toc24098167'><span style='mso-bookmark:_toc66800767'><b style='mso-bidi-font-weight:
normal'><span style='font-size:12.0pt;line-height:110%;font-family:�[so;
mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'>�v�qo��</span></b></span></span></a><a
name="_toc24465916"></a><a name="_toc24361024"></a><a name="_toc532562424"></a><span
style='mso-bookmark:_toc532562424'><span style='mso-bookmark:_toc24361024'><span
style='mso-bookmark:_toc24465916'><span style='mso-bookmark:_toc66800767'><b
style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt;
line-height:110%'>national conference</span></b></span></span></span></span><span
style='mso-bookmark:_toc24465916'><span style='mso-bookmark:_toc66800767'><b
style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt;
line-height:110%'>s</span></b></span></span><b style='mso-bidi-font-weight:
normal'><span lang=en-us style='font-size:12.0pt;line-height:110%'><o:p></o:p></span></b></p>
<p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt;
mso-char-indent-count:0;mso-list:l6 level1 lfo18'><![if !supportlists]><span
lang=en-us style='font-size:12.0pt;line-height:110%;mso-fareast-font-family:
"times new roman";mso-bidi-font-family:"times new roman"'><span
style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>
</span></span></span><![endif]><span lang=en-us style='font-size:12.0pt;
line-height:110%'>ziyi chen, chengyang ji, qin shen, wei liu, f xiao-feng
qin, aiping wu, tissue-specific deconvolution of immune cell composition by
integrating bulk and single-cell transcriptomes, bioinformatics, btz672,
https://doi.org/10.1093/bioinformatics/btz672 <o:p></o:p></span></p>
</td>
</tr>
</table>
</div>
<p class=msonormal align=left style='text-align:left;mso-pagination:widow-orphan'><span
lang=en-us style='font-size:12.0pt;font-family:�[so;mso-bidi-font-family:�[so;
mso-font-kerning:0pt'><o:p> </o:p></span></p>
</div>
</body>
</html>