-澳门游戏娱乐场棋牌

��<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/tr/rec-html40"> <head> <meta http-equiv=content-type content="text/html; charset=unicode"> <meta name=progid content=word.document> <meta name=generator content="microsoft word 15"> <meta name=originator content="microsoft word 15"> <link rel=file-list href="2019.files/filelist.xml"> <link rel=edit-time-data href="2019.files/editdata.mso"> <!--[if !mso]> <style> v\:* {behavior:url(/clunwen/2019.html);} o\:* {behavior:url(/clunwen/2019.html);} w\:* {behavior:url(/clunwen/2019.html);} .shape {behavior:url(/clunwen/2019.html);} </style> <![endif]--> <title>2019���e</title> <!--[if gte mso 9]><xml> <o:documentproperties> <o:author>cd</o:author> <o:lastauthor>cd</o:lastauthor> <o:revision>4</o:revision> <o:totaltime>1</o:totaltime> <o:created>2020-05-26t02:56:00z</o:created> <o:lastsaved>2020-05-26t02:58:00z</o:lastsaved> <o:pages>1</o:pages> <o:words>15532</o:words> <o:characters>88533</o:characters> <o:lines>737</o:lines> <o:paragraphs>207</o:paragraphs> <o:characterswithspaces>103858</o:characterswithspaces> <o:version>16.00</o:version> </o:documentproperties> <o:officedocumentsettings> <o:allowpng/> </o:officedocumentsettings> </xml><![endif]--> <link rel=themedata href="2019.files/themedata.thmx"> <link rel=colorschememapping href="2019.files/colorschememapping.xml"> <!--[if gte mso 9]><xml> <w:worddocument> <w:trackmoves>false</w:trackmoves> <w:trackformatting/> <w:validateagainstschemas/> <w:saveifxmlinvalid>false</w:saveifxmlinvalid> <w:ignoremixedcontent>false</w:ignoremixedcontent> <w:alwaysshowplaceholdertext>false</w:alwaysshowplaceholdertext> <w:donotpromoteqf/> <w:lidthemeother>en-us</w:lidthemeother> <w:lidthemeasian>zh-cn</w:lidthemeasian> <w:lidthemecomplexscript>x-none</w:lidthemecomplexscript> <w:compatibility> <w:breakwrappedtables/> <w:splitpgbreakandparamark/> <w:usefelayout/> </w:compatibility> <w:browserlevel>microsoftinternetexplorer4</w:browserlevel> <m:mathpr> <m:mathfont m:val="cambria math"/> <m:brkbin m:val="before"/> <m:brkbinsub m:val="&#45;-"/> <m:smallfrac m:val="off"/> <m:dispdef/> <m:lmargin m:val="0"/> <m:rmargin m:val="0"/> <m:defjc m:val="centergroup"/> <m:wrapindent m:val="1440"/> <m:intlim m:val="subsup"/> <m:narylim m:val="undovr"/> </m:mathpr></w:worddocument> </xml><![endif]--><!--[if gte mso 9]><xml> <w:latentstyles deflockedstate="false" defunhidewhenused="false" defsemihidden="false" defqformat="false" defpriority="99" latentstylecount="371"> <w:lsdexception locked="false" priority="0" qformat="true" name="normal"/> <w:lsdexception locked="false" priority="9" qformat="true" name="heading 1"/> <w:lsdexception locked="false" priority="9" semihidden="true" unhidewhenused="true" qformat="true" name="heading 2"/> <w:lsdexception locked="false" priority="9" semihidden="true" unhidewhenused="true" qformat="true" name="heading 3"/> <w:lsdexception locked="false" priority="0" semihidden="true" unhidewhenused="true" qformat="true" name="heading 4"/> <w:lsdexception locked="false" priority="9" semihidden="true" unhidewhenused="true" qformat="true" name="heading 5"/> <w:lsdexception locked="false" priority="9" semihidden="true" unhidewhenused="true" qformat="true" name="heading 6"/> <w:lsdexception locked="false" priority="9" semihidden="true" unhidewhenused="true" qformat="true" name="heading 7"/> <w:lsdexception locked="false" priority="9" semihidden="true" unhidewhenused="true" qformat="true" name="heading 8"/> <w:lsdexception locked="false" priority="9" semihidden="true" unhidewhenused="true" qformat="true" name="heading 9"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="index 1"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="index 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="index 3"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="index 4"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="index 5"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="index 6"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="index 7"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="index 8"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="index 9"/> <w:lsdexception locked="false" priority="39" semihidden="true" unhidewhenused="true" name="toc 1"/> <w:lsdexception locked="false" priority="39" semihidden="true" unhidewhenused="true" name="toc 2"/> <w:lsdexception locked="false" priority="39" semihidden="true" unhidewhenused="true" name="toc 3"/> <w:lsdexception locked="false" priority="39" semihidden="true" unhidewhenused="true" name="toc 4"/> <w:lsdexception locked="false" priority="39" semihidden="true" unhidewhenused="true" name="toc 5"/> <w:lsdexception locked="false" priority="39" semihidden="true" unhidewhenused="true" name="toc 6"/> <w:lsdexception locked="false" priority="39" semihidden="true" unhidewhenused="true" name="toc 7"/> <w:lsdexception locked="false" priority="39" semihidden="true" unhidewhenused="true" name="toc 8"/> <w:lsdexception locked="false" priority="39" semihidden="true" unhidewhenused="true" name="toc 9"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" qformat="true" name="normal indent"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="footnote text"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="annotation text"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="header"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" qformat="true" name="footer"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="index heading"/> <w:lsdexception locked="false" priority="35" semihidden="true" unhidewhenused="true" qformat="true" name="caption"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table of figures"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="envelope address"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="envelope return"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="footnote reference"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="annotation reference"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="line number"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="page number"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="endnote reference"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="endnote text"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table of authorities"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="macro"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="toa heading"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list bullet"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list number"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list 3"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list 4"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list 5"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list bullet 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list bullet 3"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list bullet 4"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list bullet 5"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list number 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list number 3"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list number 4"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list number 5"/> <w:lsdexception locked="false" qformat="true" name="title"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="closing"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="signature"/> <w:lsdexception locked="false" priority="1" semihidden="true" unhidewhenused="true" name="default paragraph font"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="body text"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="body text indent"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list continue"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list continue 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list continue 3"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list continue 4"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="list continue 5"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="message header"/> <w:lsdexception locked="false" priority="11" qformat="true" name="subtitle"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="salutation"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="date"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="body text first indent"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="body text first indent 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="note heading"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="body text 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="body text 3"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="body text indent 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="body text indent 3"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="block text"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" qformat="true" name="hyperlink"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="followedhyperlink"/> <w:lsdexception locked="false" priority="22" qformat="true" name="strong"/> <w:lsdexception locked="false" priority="20" qformat="true" name="emphasis"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="document map"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" qformat="true" name="plain text"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="e-mail signature"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="html top of form"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="html bottom of form"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="normal (web)"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="html acronym"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="html address"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="html cite"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="html code"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="html definition"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="html keyboard"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="html preformatted"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="html sample"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="html typewriter"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="html variable"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="normal table"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="annotation subject"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="no list"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="outline list 1"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="outline list 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="outline list 3"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table simple 1"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table simple 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table simple 3"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table classic 1"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table classic 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table classic 3"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table classic 4"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table colorful 1"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table colorful 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table colorful 3"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table columns 1"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table columns 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table columns 3"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table columns 4"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table columns 5"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table grid 1"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table grid 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table grid 3"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table grid 4"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table grid 5"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table grid 6"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table grid 7"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table grid 8"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table list 1"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table list 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table list 3"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table list 4"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table list 5"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table list 6"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table list 7"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table list 8"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table 3d effects 1"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table 3d effects 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table 3d effects 3"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table contemporary"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table elegant"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table professional"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table subtle 1"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table subtle 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table web 1"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table web 2"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table web 3"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="balloon text"/> <w:lsdexception locked="false" priority="39" name="table grid"/> <w:lsdexception locked="false" semihidden="true" unhidewhenused="true" name="table theme"/> <w:lsdexception locked="false" semihidden="true" name="placeholder text"/> <w:lsdexception locked="false" priority="1" qformat="true" name="no spacing"/> <w:lsdexception locked="false" priority="60" name="light shading"/> <w:lsdexception locked="false" priority="61" name="light list"/> <w:lsdexception locked="false" priority="62" name="light grid"/> <w:lsdexception locked="false" priority="63" name="medium shading 1"/> <w:lsdexception locked="false" priority="64" name="medium shading 2"/> <w:lsdexception locked="false" priority="65" name="medium list 1"/> <w:lsdexception locked="false" priority="66" name="medium list 2"/> <w:lsdexception locked="false" priority="67" name="medium grid 1"/> <w:lsdexception locked="false" priority="68" name="medium grid 2"/> <w:lsdexception locked="false" priority="69" name="medium grid 3"/> <w:lsdexception locked="false" priority="70" name="dark list"/> <w:lsdexception locked="false" priority="71" name="colorful shading"/> <w:lsdexception locked="false" priority="72" name="colorful list"/> <w:lsdexception locked="false" priority="73" name="colorful grid"/> <w:lsdexception locked="false" priority="60" name="light shading accent 1"/> <w:lsdexception locked="false" priority="61" name="light list accent 1"/> <w:lsdexception locked="false" priority="62" name="light grid accent 1"/> <w:lsdexception locked="false" priority="63" name="medium shading 1 accent 1"/> <w:lsdexception locked="false" priority="64" name="medium shading 2 accent 1"/> <w:lsdexception locked="false" priority="65" name="medium list 1 accent 1"/> <w:lsdexception locked="false" semihidden="true" name="revision"/> <w:lsdexception locked="false" priority="34" qformat="true" name="list paragraph"/> <w:lsdexception locked="false" priority="29" qformat="true" name="quote"/> <w:lsdexception locked="false" priority="30" qformat="true" name="intense quote"/> <w:lsdexception locked="false" priority="66" name="medium list 2 accent 1"/> <w:lsdexception locked="false" priority="67" name="medium grid 1 accent 1"/> <w:lsdexception locked="false" priority="68" name="medium grid 2 accent 1"/> <w:lsdexception locked="false" priority="69" name="medium grid 3 accent 1"/> <w:lsdexception locked="false" priority="70" name="dark list accent 1"/> <w:lsdexception locked="false" priority="71" name="colorful shading accent 1"/> <w:lsdexception locked="false" priority="72" name="colorful list accent 1"/> <w:lsdexception locked="false" priority="73" name="colorful grid accent 1"/> <w:lsdexception locked="false" priority="60" name="light shading accent 2"/> <w:lsdexception locked="false" priority="61" name="light list accent 2"/> <w:lsdexception locked="false" priority="62" name="light grid accent 2"/> <w:lsdexception locked="false" priority="63" name="medium shading 1 accent 2"/> <w:lsdexception locked="false" priority="64" name="medium shading 2 accent 2"/> <w:lsdexception locked="false" priority="65" name="medium list 1 accent 2"/> <w:lsdexception locked="false" priority="66" name="medium list 2 accent 2"/> <w:lsdexception locked="false" priority="67" name="medium grid 1 accent 2"/> <w:lsdexception locked="false" priority="68" name="medium grid 2 accent 2"/> <w:lsdexception locked="false" priority="69" name="medium grid 3 accent 2"/> <w:lsdexception locked="false" priority="70" name="dark list accent 2"/> <w:lsdexception locked="false" priority="71" name="colorful shading accent 2"/> <w:lsdexception locked="false" priority="72" name="colorful list accent 2"/> <w:lsdexception locked="false" priority="73" name="colorful grid accent 2"/> <w:lsdexception locked="false" priority="60" name="light shading accent 3"/> <w:lsdexception locked="false" priority="61" name="light list accent 3"/> <w:lsdexception locked="false" priority="62" name="light grid accent 3"/> <w:lsdexception locked="false" priority="63" name="medium shading 1 accent 3"/> <w:lsdexception locked="false" priority="64" name="medium shading 2 accent 3"/> <w:lsdexception locked="false" priority="65" name="medium list 1 accent 3"/> <w:lsdexception locked="false" priority="66" name="medium list 2 accent 3"/> <w:lsdexception locked="false" priority="67" name="medium grid 1 accent 3"/> <w:lsdexception locked="false" priority="68" name="medium grid 2 accent 3"/> <w:lsdexception locked="false" priority="69" name="medium grid 3 accent 3"/> <w:lsdexception locked="false" priority="70" name="dark list accent 3"/> <w:lsdexception locked="false" priority="71" name="colorful shading accent 3"/> <w:lsdexception locked="false" priority="72" name="colorful list accent 3"/> <w:lsdexception locked="false" priority="73" name="colorful grid accent 3"/> <w:lsdexception locked="false" priority="60" name="light shading accent 4"/> <w:lsdexception locked="false" priority="61" name="light list accent 4"/> <w:lsdexception locked="false" priority="62" name="light grid accent 4"/> <w:lsdexception locked="false" priority="63" name="medium shading 1 accent 4"/> <w:lsdexception locked="false" priority="64" name="medium shading 2 accent 4"/> <w:lsdexception locked="false" priority="65" name="medium list 1 accent 4"/> <w:lsdexception locked="false" priority="66" name="medium list 2 accent 4"/> <w:lsdexception locked="false" priority="67" name="medium grid 1 accent 4"/> <w:lsdexception locked="false" priority="68" name="medium grid 2 accent 4"/> <w:lsdexception locked="false" priority="69" name="medium grid 3 accent 4"/> <w:lsdexception locked="false" priority="70" name="dark list accent 4"/> <w:lsdexception locked="false" priority="71" name="colorful shading accent 4"/> <w:lsdexception locked="false" priority="72" name="colorful list accent 4"/> <w:lsdexception locked="false" priority="73" name="colorful grid accent 4"/> <w:lsdexception locked="false" priority="60" name="light shading accent 5"/> <w:lsdexception locked="false" priority="61" name="light list accent 5"/> <w:lsdexception locked="false" priority="62" name="light grid accent 5"/> <w:lsdexception locked="false" priority="63" name="medium shading 1 accent 5"/> <w:lsdexception locked="false" priority="64" name="medium shading 2 accent 5"/> <w:lsdexception locked="false" priority="65" name="medium list 1 accent 5"/> <w:lsdexception locked="false" priority="66" name="medium list 2 accent 5"/> <w:lsdexception locked="false" priority="67" name="medium grid 1 accent 5"/> <w:lsdexception locked="false" priority="68" name="medium grid 2 accent 5"/> <w:lsdexception locked="false" priority="69" name="medium grid 3 accent 5"/> <w:lsdexception locked="false" priority="70" name="dark list accent 5"/> <w:lsdexception locked="false" priority="71" name="colorful shading accent 5"/> <w:lsdexception locked="false" priority="72" name="colorful list accent 5"/> <w:lsdexception locked="false" priority="73" name="colorful grid accent 5"/> <w:lsdexception locked="false" priority="60" name="light shading accent 6"/> <w:lsdexception locked="false" priority="61" name="light list accent 6"/> <w:lsdexception locked="false" priority="62" name="light grid accent 6"/> <w:lsdexception locked="false" priority="63" name="medium shading 1 accent 6"/> <w:lsdexception locked="false" priority="64" name="medium shading 2 accent 6"/> <w:lsdexception locked="false" priority="65" name="medium list 1 accent 6"/> <w:lsdexception locked="false" priority="66" name="medium list 2 accent 6"/> <w:lsdexception locked="false" priority="67" name="medium grid 1 accent 6"/> <w:lsdexception locked="false" priority="68" name="medium grid 2 accent 6"/> <w:lsdexception locked="false" priority="69" name="medium grid 3 accent 6"/> <w:lsdexception locked="false" priority="70" name="dark list accent 6"/> <w:lsdexception locked="false" priority="71" name="colorful shading accent 6"/> <w:lsdexception locked="false" priority="72" name="colorful list accent 6"/> <w:lsdexception locked="false" priority="73" name="colorful grid accent 6"/> <w:lsdexception locked="false" priority="19" qformat="true" name="subtle emphasis"/> <w:lsdexception locked="false" priority="21" qformat="true" name="intense emphasis"/> <w:lsdexception locked="false" priority="31" qformat="true" name="subtle reference"/> <w:lsdexception locked="false" priority="32" qformat="true" name="intense reference"/> <w:lsdexception locked="false" priority="33" qformat="true" name="book title"/> <w:lsdexception locked="false" priority="37" semihidden="true" unhidewhenused="true" name="bibliography"/> <w:lsdexception locked="false" priority="39" semihidden="true" unhidewhenused="true" qformat="true" name="toc heading"/> <w:lsdexception locked="false" priority="41" name="plain table 1"/> <w:lsdexception locked="false" priority="42" name="plain table 2"/> <w:lsdexception locked="false" priority="43" name="plain table 3"/> <w:lsdexception locked="false" priority="44" name="plain table 4"/> <w:lsdexception locked="false" priority="45" name="plain table 5"/> <w:lsdexception locked="false" priority="40" name="grid table light"/> <w:lsdexception locked="false" priority="46" name="grid table 1 light"/> <w:lsdexception locked="false" priority="47" name="grid table 2"/> <w:lsdexception locked="false" priority="48" name="grid table 3"/> <w:lsdexception locked="false" priority="49" name="grid table 4"/> <w:lsdexception locked="false" priority="50" name="grid table 5 dark"/> <w:lsdexception locked="false" priority="51" name="grid table 6 colorful"/> <w:lsdexception locked="false" priority="52" name="grid table 7 colorful"/> <w:lsdexception locked="false" priority="46" name="grid table 1 light accent 1"/> <w:lsdexception locked="false" priority="47" name="grid table 2 accent 1"/> <w:lsdexception locked="false" priority="48" name="grid table 3 accent 1"/> <w:lsdexception locked="false" priority="49" name="grid table 4 accent 1"/> <w:lsdexception locked="false" priority="50" name="grid table 5 dark accent 1"/> <w:lsdexception locked="false" priority="51" name="grid table 6 colorful accent 1"/> <w:lsdexception locked="false" priority="52" name="grid table 7 colorful accent 1"/> <w:lsdexception locked="false" priority="46" name="grid table 1 light accent 2"/> <w:lsdexception locked="false" priority="47" name="grid table 2 accent 2"/> <w:lsdexception locked="false" priority="48" name="grid table 3 accent 2"/> <w:lsdexception locked="false" priority="49" name="grid table 4 accent 2"/> <w:lsdexception locked="false" priority="50" name="grid table 5 dark accent 2"/> <w:lsdexception locked="false" priority="51" name="grid table 6 colorful accent 2"/> <w:lsdexception locked="false" priority="52" name="grid table 7 colorful accent 2"/> <w:lsdexception locked="false" priority="46" name="grid table 1 light accent 3"/> <w:lsdexception locked="false" priority="47" name="grid table 2 accent 3"/> <w:lsdexception locked="false" priority="48" name="grid table 3 accent 3"/> <w:lsdexception locked="false" priority="49" name="grid table 4 accent 3"/> <w:lsdexception locked="false" priority="50" name="grid table 5 dark accent 3"/> <w:lsdexception locked="false" priority="51" name="grid table 6 colorful accent 3"/> <w:lsdexception locked="false" priority="52" name="grid table 7 colorful accent 3"/> <w:lsdexception locked="false" priority="46" name="grid table 1 light accent 4"/> <w:lsdexception locked="false" priority="47" name="grid table 2 accent 4"/> <w:lsdexception locked="false" priority="48" name="grid table 3 accent 4"/> <w:lsdexception locked="false" priority="49" name="grid table 4 accent 4"/> <w:lsdexception locked="false" priority="50" name="grid table 5 dark accent 4"/> <w:lsdexception locked="false" priority="51" name="grid table 6 colorful accent 4"/> <w:lsdexception locked="false" priority="52" name="grid table 7 colorful accent 4"/> <w:lsdexception locked="false" priority="46" name="grid table 1 light accent 5"/> <w:lsdexception locked="false" priority="47" name="grid table 2 accent 5"/> <w:lsdexception locked="false" priority="48" name="grid table 3 accent 5"/> <w:lsdexception locked="false" priority="49" name="grid table 4 accent 5"/> <w:lsdexception locked="false" priority="50" name="grid table 5 dark accent 5"/> <w:lsdexception locked="false" priority="51" name="grid table 6 colorful accent 5"/> <w:lsdexception locked="false" priority="52" name="grid table 7 colorful accent 5"/> <w:lsdexception locked="false" priority="46" name="grid table 1 light accent 6"/> <w:lsdexception locked="false" priority="47" name="grid table 2 accent 6"/> <w:lsdexception locked="false" priority="48" name="grid table 3 accent 6"/> <w:lsdexception locked="false" priority="49" name="grid table 4 accent 6"/> <w:lsdexception locked="false" priority="50" name="grid table 5 dark accent 6"/> <w:lsdexception locked="false" priority="51" name="grid table 6 colorful accent 6"/> <w:lsdexception locked="false" priority="52" name="grid table 7 colorful accent 6"/> <w:lsdexception locked="false" priority="46" name="list table 1 light"/> <w:lsdexception locked="false" priority="47" name="list table 2"/> <w:lsdexception locked="false" priority="48" name="list table 3"/> <w:lsdexception locked="false" priority="49" name="list table 4"/> <w:lsdexception locked="false" priority="50" name="list table 5 dark"/> <w:lsdexception locked="false" priority="51" name="list table 6 colorful"/> <w:lsdexception locked="false" priority="52" name="list table 7 colorful"/> <w:lsdexception locked="false" priority="46" name="list table 1 light accent 1"/> <w:lsdexception locked="false" priority="47" name="list table 2 accent 1"/> <w:lsdexception locked="false" priority="48" name="list table 3 accent 1"/> <w:lsdexception locked="false" priority="49" name="list table 4 accent 1"/> <w:lsdexception locked="false" priority="50" name="list table 5 dark accent 1"/> <w:lsdexception locked="false" priority="51" name="list table 6 colorful accent 1"/> <w:lsdexception locked="false" priority="52" name="list table 7 colorful accent 1"/> <w:lsdexception locked="false" priority="46" name="list table 1 light accent 2"/> <w:lsdexception locked="false" priority="47" name="list table 2 accent 2"/> <w:lsdexception locked="false" priority="48" name="list table 3 accent 2"/> <w:lsdexception locked="false" priority="49" name="list table 4 accent 2"/> <w:lsdexception locked="false" priority="50" name="list table 5 dark accent 2"/> <w:lsdexception locked="false" priority="51" name="list table 6 colorful accent 2"/> <w:lsdexception locked="false" priority="52" name="list table 7 colorful accent 2"/> <w:lsdexception locked="false" priority="46" name="list table 1 light accent 3"/> <w:lsdexception locked="false" priority="47" name="list table 2 accent 3"/> <w:lsdexception locked="false" priority="48" name="list table 3 accent 3"/> <w:lsdexception locked="false" priority="49" name="list table 4 accent 3"/> <w:lsdexception locked="false" priority="50" name="list table 5 dark accent 3"/> <w:lsdexception locked="false" priority="51" name="list table 6 colorful accent 3"/> <w:lsdexception locked="false" priority="52" name="list table 7 colorful accent 3"/> <w:lsdexception locked="false" priority="46" name="list table 1 light accent 4"/> <w:lsdexception locked="false" priority="47" name="list table 2 accent 4"/> <w:lsdexception locked="false" priority="48" name="list table 3 accent 4"/> <w:lsdexception locked="false" priority="49" name="list table 4 accent 4"/> <w:lsdexception locked="false" priority="50" name="list table 5 dark accent 4"/> <w:lsdexception locked="false" priority="51" name="list table 6 colorful accent 4"/> <w:lsdexception locked="false" priority="52" name="list table 7 colorful accent 4"/> <w:lsdexception locked="false" priority="46" name="list table 1 light accent 5"/> <w:lsdexception locked="false" priority="47" name="list table 2 accent 5"/> <w:lsdexception locked="false" priority="48" name="list table 3 accent 5"/> <w:lsdexception locked="false" priority="49" name="list table 4 accent 5"/> <w:lsdexception locked="false" priority="50" name="list table 5 dark accent 5"/> <w:lsdexception locked="false" priority="51" name="list table 6 colorful accent 5"/> <w:lsdexception locked="false" priority="52" name="list table 7 colorful accent 5"/> <w:lsdexception locked="false" priority="46" name="list table 1 light accent 6"/> <w:lsdexception locked="false" priority="47" name="list table 2 accent 6"/> <w:lsdexception locked="false" priority="48" name="list table 3 accent 6"/> <w:lsdexception locked="false" priority="49" name="list table 4 accent 6"/> <w:lsdexception locked="false" priority="50" name="list table 5 dark accent 6"/> <w:lsdexception locked="false" priority="51" name="list table 6 colorful accent 6"/> <w:lsdexception locked="false" priority="52" name="list table 7 colorful accent 6"/> </w:latentstyles> </xml><![endif]--> <style> <!-- /* font definitions */ @font-face {font-family:�[so; panose-1:2 1 6 0 3 1 1 1 1 1; mso-font-alt:simsun; mso-font-charset:134; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:3 680460288 22 0 262145 0;} @font-face {font-family:ўso; panose-1:2 1 6 9 6 1 1 1 1 1; mso-font-alt:simhei; mso-font-charset:134; mso-generic-font-family:modern; mso-font-pitch:fixed; mso-font-signature:-2147482945 953122042 22 0 262145 0;} @font-face {font-family:"cambria math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-536869121 1107305727 33554432 0 415 0;} @font-face {font-family:i{�~; panose-1:2 1 6 0 3 1 1 1 1 1; mso-font-alt:dengxian; mso-font-charset:134; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:-1610612033 953122042 22 0 262159 0;} @font-face {font-family:"arial unicode ms"; panose-1:2 11 6 4 2 2 2 2 2 4; mso-font-charset:134; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:0 -371195905 63 0 4129279 0;} @font-face {font-family:cambria; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-536869121 1107305727 33554432 0 415 0;} @font-face {font-family:verdana; panose-1:2 11 6 4 3 5 4 4 2 4; mso-font-charset:0; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:-1610610945 1073750107 16 0 415 0;} @font-face {font-family:�n�[_gb2312; panose-1:2 1 6 9 3 1 1 1 1 1; mso-font-charset:134; mso-generic-font-family:modern; mso-font-pitch:fixed; mso-font-signature:1 135135232 16 0 262144 0;} @font-face {font-family:calibri; panose-1:2 15 5 2 2 2 4 3 2 4; mso-font-charset:0; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:-536859905 -1073732485 9 0 511 0;} @font-face {font-family:cmbx9; mso-font-alt:cambria; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:auto; mso-font-signature:0 0 0 0 0 0;} @font-face {font-family:"\@�[so"; panose-1:2 1 6 0 3 1 1 1 1 1; mso-font-charset:134; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:3 680460288 22 0 262145 0;} @font-face {font-family:"\@i{�~"; panose-1:2 1 6 0 3 1 1 1 1 1; mso-font-charset:134; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:-1610612033 953122042 22 0 262159 0;} @font-face {font-family:"\@ўso"; panose-1:2 1 6 0 3 1 1 1 1 1; mso-font-charset:134; mso-generic-font-family:modern; mso-font-pitch:fixed; mso-font-signature:-2147482945 953122042 22 0 262145 0;} @font-face {font-family:"\@�n�[_gb2312"; mso-font-charset:134; mso-generic-font-family:modern; mso-font-pitch:fixed; mso-font-signature:1 135135232 16 0 262144 0;} @font-face {font-family:"\@arial unicode ms"; panose-1:2 11 6 4 2 2 2 2 2 4; mso-font-charset:134; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:0 -371195905 63 0 4129279 0;} /* style definitions */ p.msonormal, li.msonormal, div.msonormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; text-align:justify; text-justify:inter-ideograph; mso-pagination:none; font-size:10.5pt; mso-bidi-font-size:11.0pt; font-family:i{�~; mso-ascii-font-family:i{�~; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:i{�~; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:i{�~; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"times new roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt;} h1 {mso-style-priority:9; mso-style-unhide:no; mso-style-qformat:yes; mso-style-link:"h�� 1 w[&{"; mso-style-next:ck�e; margin-top:17.0pt; margin-right:0cm; margin-bottom:16.5pt; margin-left:0cm; text-align:justify; text-justify:inter-ideograph; line-height:240%; mso-pagination:lines-together; page-break-after:avoid; mso-outline-level:1; font-size:22.0pt; font-family:i{�~; mso-ascii-font-family:i{�~; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:i{�~; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:i{�~; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"times new roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:22.0pt; font-weight:bold;} h2 {mso-style-noshow:yes; mso-style-priority:9; mso-style-qformat:yes; mso-style-link:"h�� 2 w[&{"; mso-style-next:ck�e; margin-top:13.0pt; margin-right:0cm; margin-bottom:13.0pt; margin-left:0cm; text-align:justify; text-justify:inter-ideograph; line-height:172%; mso-pagination:lines-together; page-break-after:avoid; mso-outline-level:2; font-size:16.0pt; font-family:"i{�~ light"; mso-ascii-font-family:"i{�~ light"; mso-ascii-theme-font:major-latin; mso-fareast-font-family:"i{�~ light"; mso-fareast-theme-font:major-fareast; mso-hansi-font-family:"i{�~ light"; mso-hansi-theme-font:major-latin; mso-bidi-font-family:"times new roman"; mso-bidi-theme-font:major-bidi; mso-font-kerning:1.0pt; font-weight:bold;} h3 {mso-style-noshow:yes; mso-style-priority:9; mso-style-qformat:yes; mso-style-link:"h�� 3 w[&{"; mso-style-next:ck�e; margin-top:13.0pt; margin-right:0cm; margin-bottom:13.0pt; margin-left:0cm; text-align:justify; text-justify:inter-ideograph; line-height:172%; mso-pagination:lines-together; page-break-after:avoid; mso-outline-level:3; font-size:16.0pt; font-family:i{�~; mso-ascii-font-family:i{�~; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:i{�~; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:i{�~; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"times new roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt; font-weight:bold;} h4 {mso-style-noshow:yes; mso-style-qformat:yes; mso-style-link:"h�� 4 w[&{1"; mso-style-next:ck�e; margin-top:14.0pt; margin-right:0cm; margin-bottom:14.5pt; margin-left:0cm; text-align:justify; text-justify:inter-ideograph; line-height:155%; mso-pagination:lines-together; page-break-after:avoid; mso-outline-level:4; font-size:14.0pt; font-family:"cambria",serif; mso-fareast-font-family:�[so; mso-bidi-font-family:"times new roman"; mso-font-kerning:1.0pt; font-weight:bold;} h6 {mso-style-noshow:yes; mso-style-priority:9; mso-style-qformat:yes; mso-style-link:"h�� 6 w[&{"; mso-style-next:ck�e; margin-top:12.0pt; margin-right:0cm; margin-bottom:3.2pt; margin-left:0cm; text-align:justify; text-justify:inter-ideograph; line-height:132%; mso-pagination:lines-together; page-break-after:avoid; mso-outline-level:6; font-size:12.0pt; font-family:"i{�~ light"; mso-ascii-font-family:"i{�~ light"; mso-ascii-theme-font:major-latin; mso-fareast-font-family:"i{�~ light"; mso-fareast-theme-font:major-fareast; mso-hansi-font-family:"i{�~ light"; mso-hansi-theme-font:major-latin; mso-bidi-font-family:"times new roman"; mso-bidi-theme-font:major-bidi; mso-font-kerning:1.0pt; font-weight:bold;} p.msotoc1, li.msotoc1, div.msotoc1 {mso-style-update:auto; mso-style-noshow:yes; mso-style-priority:39; mso-style-next:ck�e; margin:0cm; margin-bottom:.0001pt; text-align:justify; text-justify:inter-ideograph; mso-pagination:none; font-size:10.5pt; mso-bidi-font-size:11.0pt; font-family:i{�~; mso-ascii-font-family:i{�~; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:i{�~; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:i{�~; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"times new roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt;} p.msotoc2, li.msotoc2, div.msotoc2 {mso-style-update:auto; mso-style-noshow:yes; mso-style-priority:39; mso-style-next:ck�e; margin-top:0cm; margin-right:0cm; margin-bottom:0cm; margin-left:21.0pt; margin-bottom:.0001pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:0cm; mso-para-margin-left:2.0gd; mso-para-margin-bottom:.0001pt; text-align:justify; text-justify:inter-ideograph; mso-pagination:none; font-size:10.5pt; mso-bidi-font-size:11.0pt; font-family:i{�~; mso-ascii-font-family:i{�~; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:i{�~; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:i{�~; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"times new roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt;} p.msotoc3, li.msotoc3, div.msotoc3 {mso-style-update:auto; mso-style-noshow:yes; mso-style-priority:39; mso-style-next:ck�e; margin-top:0cm; margin-right:0cm; margin-bottom:0cm; margin-left:42.0pt; margin-bottom:.0001pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:0cm; mso-para-margin-left:4.0gd; mso-para-margin-bottom:.0001pt; text-align:justify; text-justify:inter-ideograph; mso-pagination:none; font-size:10.5pt; mso-bidi-font-size:11.0pt; font-family:i{�~; mso-ascii-font-family:i{�~; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:i{�~; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:i{�~; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"times new roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt;} p.msonormalindent, li.msonormalindent, div.msonormalindent {mso-style-name:"ck�e)ۏ\,ck�e���l�)ۏ$nw[ �"; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; margin:0cm; margin-bottom:.0001pt; text-align:justify; text-justify:inter-ideograph; text-indent:21.0pt; line-height:20.0pt; mso-line-height-rule:exactly; mso-pagination:none; font-size:12.0pt; mso-bidi-font-size:10.0pt; font-family:�[so; mso-hansi-font-family:"times new roman"; mso-bidi-font-family:"times new roman"; mso-font-kerning:1.0pt;} p.msocommenttext, li.msocommenttext, div.msocommenttext {mso-style-noshow:yes; mso-style-priority:99; mso-style-link:"yb�l�ew[ w[&{"; margin:0cm; margin-bottom:.0001pt; mso-pagination:none; font-size:10.5pt; mso-bidi-font-size:11.0pt; font-family:i{�~; mso-ascii-font-family:i{�~; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:i{�~; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:i{�~; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"times new roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt;} p.msoheader, li.msoheader, div.msoheader {mso-style-priority:99; mso-style-link:"u� w w[&{"; margin:0cm; margin-bottom:.0001pt; text-align:center; mso-pagination:none; tab-stops:center 207.65pt right 415.3pt; layout-grid-mode:char; border:none; mso-border-bottom-alt:solid windowtext .75pt; padding:0cm; mso-padding-alt:0cm 0cm 1.0pt 0cm; font-size:9.0pt; font-family:i{�~; mso-ascii-font-family:i{�~; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:i{�~; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:i{�~; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"times new roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt;} p.msofooter, li.msofooter, div.msofooter {mso-style-priority:99; mso-style-qformat:yes; mso-style-link:"u�� w[&{"; margin:0cm; margin-bottom:.0001pt; mso-pagination:none; tab-stops:center 207.65pt right 415.3pt; layout-grid-mode:char; font-size:9.0pt; font-family:i{�~; mso-ascii-font-family:i{�~; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:i{�~; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:i{�~; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"times new roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt;} p.msocaption, li.msocaption, div.msocaption {mso-style-noshow:yes; mso-style-priority:35; mso-style-qformat:yes; mso-style-next:ck�e; margin:0cm; margin-bottom:.0001pt; text-align:justify; text-justify:inter-ideograph; mso-pagination:none; font-size:10.0pt; font-family:"i{�~ light"; mso-ascii-font-family:"i{�~ light"; mso-ascii-theme-font:major-latin; mso-fareast-font-family:ўso; mso-hansi-font-family:"i{�~ light"; mso-hansi-theme-font:major-latin; mso-bidi-font-family:"times new roman"; mso-bidi-theme-font:major-bidi; mso-font-kerning:1.0pt;} span.msocommentreference {mso-style-noshow:yes; mso-style-priority:99; mso-ansi-font-size:10.5pt; mso-bidi-font-size:10.5pt;} p.msotitle, li.msotitle, div.msotitle {mso-style-priority:99; mso-style-unhide:no; mso-style-qformat:yes; mso-style-link:"h�� w[&{1"; margin:0cm; margin-bottom:.0001pt; text-align:center; line-height:15.6pt; mso-pagination:none; mso-layout-grid-align:none; font-size:14.0pt; mso-bidi-font-size:10.0pt; font-family:"times new roman",serif; mso-fareast-font-family:�[so; font-weight:bold; mso-bidi-font-weight:normal;} p.msobodytext, li.msobodytext, div.msobodytext {mso-style-noshow:yes; mso-style-priority:99; mso-style-link:"ck�e�e,g w[&{"; margin-top:0cm; margin-right:0cm; margin-bottom:6.0pt; margin-left:0cm; text-align:justify; text-justify:inter-ideograph; mso-pagination:none; font-size:10.5pt; mso-bidi-font-size:11.0pt; font-family:i{�~; mso-ascii-font-family:i{�~; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:i{�~; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:i{�~; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"times new roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt;} p.msodate, li.msodate, div.msodate {mso-style-noshow:yes; mso-style-priority:99; mso-style-link:"�eg w[&{"; mso-style-next:ck�e; margin-top:0cm; margin-right:0cm; margin-bottom:0cm; margin-left:5.0pt; margin-bottom:.0001pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:0cm; mso-para-margin-left:25.0gd; mso-para-margin-bottom:.0001pt; text-align:justify; text-justify:inter-ideograph; mso-pagination:none; font-size:10.5pt; mso-bidi-font-size:11.0pt; font-family:i{�~; mso-ascii-font-family:i{�~; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:i{�~; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:i{�~; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"times new roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt;} p.msobodytext3, li.msobodytext3, div.msobodytext3 {mso-style-noshow:yes; mso-style-priority:99; mso-style-link:"ck�e�e,g 3 w[&{"; margin:0cm; margin-bottom:.0001pt; text-align:center; mso-pagination:none; font-size:9.0pt; mso-bidi-font-size:10.0pt; font-family:"times new roman",serif; mso-fareast-font-family:�[so; mso-font-kerning:1.0pt;} a:link, span.msohyperlink {mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; color:#0563c1; mso-themecolor:hyperlink; text-decoration:underline; text-underline:single;} a:visited, span.msohyperlinkfollowed {mso-style-noshow:yes; mso-style-priority:99; color:#954f72; mso-themecolor:followedhyperlink; text-decoration:underline; text-underline:single;} p.msoplaintext, li.msoplaintext, div.msoplaintext {mso-style-name:"�~�e,g\,nf��ew["; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-link:"�~�e,g w[&{1\,nf��ew[ w[&{"; margin:0cm; margin-bottom:.0001pt; text-align:justify; text-justify:inter-ideograph; mso-pagination:none; font-size:10.5pt; mso-bidi-font-size:10.0pt; font-family:�[so; mso-hansi-font-family:"courier new"; mso-bidi-font-family:"times new roman"; mso-font-kerning:1.0pt;} p {mso-style-noshow:yes; mso-style-priority:99; mso-margin-top-alt:auto; margin-right:0cm; mso-margin-bottom-alt:auto; margin-left:0cm; mso-pagination:widow-orphan; font-size:12.0pt; font-family:�[so; mso-bidi-font-family:�[so;} pre {mso-style-noshow:yes; mso-style-priority:99; mso-style-link:"html ���� </style> <!--[if gte mso 10]> <style> /* style definitions */ table.msonormaltable {mso-style-name:nf�h� <![endif]--><!--[if gte mso 9]><xml> <o:shapedefaults v:ext="edit" spidmax="2049"/> </xml><![endif]--><!--[if gte mso 9]><xml> <o:shapelayout v:ext="edit"> <o:idmap v:ext="edit" data="1"/> </o:shapelayout></xml><![endif]--> </head> <body lang=zh-cn link="#0563c1" vlink="#954f72" style='tab-interval:21.0pt'> <div class=wordsection1> <p class=msonormal align=center style='text-align:center;mso-pagination:widow-orphan'><span lang=en-us style='font-size:12.0pt;font-family:�[so;mso-bidi-font-family:�[so; mso-font-kerning:0pt;mso-no-proof:yes'><img width=1002 height=120 id="_x0000_i1025" src="../nlpr.jpg"></span><span lang=en-us style='font-size: 12.0pt;font-family:�[so;mso-bidi-font-family:�[so;mso-font-kerning:0pt'><o:p></o:p></span></p> <div align=center> <table class=msonormaltable border=1 cellspacing=0 cellpadding=0 width=1117 style='width:838.0pt;border-collapse:collapse;border:none;mso-border-alt:solid windowtext .5pt; mso-yfti-tbllook:1184;mso-padding-alt:0cm 0cm 0cm 0cm'> <colgroup><col width="1117" style="width: 838pt"></colgroup> <tr style='mso-yfti-irow:0;mso-yfti-firstrow:yes;height:15.0pt'> <td width=1117 style='width:838.0pt;border:solid windowtext 1.0pt;border-bottom: none;mso-border-top-alt:solid windowtext .5pt;mso-border-left-alt:solid windowtext .5pt; mso-border-right-alt:solid windowtext .5pt;padding:.75pt .75pt 0cm .75pt; height:15.0pt'> <p class=msonormal align=center style='text-align:center;mso-pagination:widow-orphan'><b><span lang=en-us style='mso-bidi-font-size:10.5pt;font-family:"times new roman",serif; mso-fareast-font-family:�[so;color:black;mso-font-kerning:0pt'>2019</span></b><b><span style='mso-bidi-font-size:10.5pt;font-family:�[so;mso-bidi-font-family:"times new roman"; color:black;mso-font-kerning:0pt'>���e�vu_</span></b><b><span lang=en-us style='mso-bidi-font-size:10.5pt;font-family:"times new roman",serif; mso-fareast-font-family:�[so;color:black;mso-font-kerning:0pt'>&nbsp;<o:p></o:p></span></b></p> </td> </tr> <tr style='mso-yfti-irow:1;height:15.0pt'> <td width=1117 style='width:838.0pt;border-top:none;border-left:solid windowtext 1.0pt; border-bottom:none;border-right:solid windowtext 1.0pt;mso-border-left-alt: solid windowtext .5pt;mso-border-right-alt:solid windowtext .5pt;padding: .75pt .75pt 0cm .75pt;height:15.0pt'> <p class=msonormal align=center style='text-align:center;mso-pagination:widow-orphan'><b><span lang=en-us style='mso-bidi-font-size:10.5pt;font-family:"times new roman",serif; mso-fareast-font-family:�[so;color:black;mso-font-kerning:0pt'>&nbsp;list of publications<o:p></o:p></span></b></p> </td> </tr> <tr style='mso-yfti-irow:2;mso-yfti-lastrow:yes;height:15.0pt'> <td width=1117 style='width:838.0pt;border:solid windowtext 1.0pt;border-top: none;mso-border-left-alt:solid windowtext .5pt;mso-border-bottom-alt:solid windowtext .5pt; mso-border-right-alt:solid windowtext .5pt;padding:.75pt .75pt 0cm .75pt; height:15.0pt'> <p class=msonormal style='mso-pagination:widow-orphan'><span lang=en-us style='mso-bidi-font-size:10.5pt;font-family:"times new roman",serif; mso-fareast-font-family:�[so;color:black;mso-font-kerning:0pt'>&nbsp; <o:p></o:p></span></p> <p class=af0 style='mso-outline-level:2'><a name="_toc40189707" id="_toc532562395"></a><a name="_toc24098141" id="_toc532562225"></a><a name="_toc532562225" id="_toc532391194"></a><a name="_toc532391194"><span style='mso-bookmark:_toc532562225'><span style='mso-bookmark:_toc24098141'><span style='mso-bookmark:_toc40189707'><b style='mso-bidi-font-weight:normal'><span style='font-size:12.0pt;mso-bidi-font-size:11.0pt;line-height:110%; font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>�n �w�</span></b></span></span></span></a><a name="_toc24465890"></a><span style='mso-bookmark:_toc24465890'><span style='mso-bookmark:_toc40189707'><b style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt;mso-bidi-font-size:11.0pt;line-height: 110%'>books / chapters</span></b></span></span><b style='mso-bidi-font-weight: normal'><span lang=en-us style='font-size:12.0pt;mso-bidi-font-size:11.0pt; line-height:110%'><o:p></o:p></span></b></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l0 level1 lfo2'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>sergio escalera, stephane ayache, jun wan, meysam madadi, umut guclu, xavier baro(eds.), inpainting and denoising challenges, isbn:978-3-030-25613-5, springer </span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l0 level1 lfo2'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>2.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>�[b�^ �yw � _�[�o ��e,gpencc�c �</span><span lang=en-us>2019</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'> �nns'yf[�qhr>y</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l0 level1 lfo2'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>3.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xu-yao zhang, yi-chao, fei yin, cheng-lin liu, deep learning based handwritten chinese character and text recognition, in: k. huang, a. hussain, q.-f. wang, r. zhang (eds.), deep learning: fundamentals, theory and applications, 2019, pp.58-88, springer.</span></p> <p class=af0><b><span lang=en-us><o:p>&nbsp;</o:p></span></b></p> <p class=af0 style='mso-outline-level:2'><a name="_toc40189708"></a><a name="_toc24098142"></a><a name="_toc532562227"></a><a name="_toc532391196"><span style='mso-bookmark:_toc532562227'><span style='mso-bookmark:_toc24098142'><span style='mso-bookmark:_toc40189708'><b><span style='font-size:12.0pt; mso-bidi-font-size:11.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>�ve� rir</span></b></span></span></span></a><a name="_toc24465891"></a><a name="_toc24360999"></a><a name="_toc532562397"></a><span style='mso-bookmark:_toc532562397'><span style='mso-bookmark:_toc24360999'><span style='mso-bookmark:_toc24465891'><span style='mso-bookmark:_toc40189708'><b><span lang=en-us style='font-size:12.0pt;mso-bidi-font-size:11.0pt;line-height: 110%'>international journals</span></b></span></span></span></span><b><span lang=en-us style='font-size:12.0pt;mso-bidi-font-size:11.0pt;line-height: 110%'><o:p></o:p></span></b></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189709"></a><a name="_toc24098143"></a><a name="_toc532562228"></a><a name="_toc532391197"><span style='mso-bookmark:_toc532562228'><span style='mso-bookmark:_toc24098143'><span style='mso-bookmark:_toc40189709'><b><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>���{:gɖɉ</span></b></span></span></span></a><a name="_toc24465892"></a><a name="_toc24361000"></a><a name="_toc532562398"><span style='mso-bookmark:_toc24361000'><span style='mso-bookmark:_toc24465892'><span style='mso-bookmark:_toc40189709'><b><span lang=en-us>computer vision</span></b></span></span></span></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>fuzhang wu, yan kong, weiming dong, yanjun wu,  gradient-aware blind face inpainting for deep face verification. neurocomputing, vol. 331, pp. 301-311, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>2.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yucheng zhao, fan tang, weiming dong, feiyue huang, xiaopeng zhang,  joint face alignment and segmentation via deep multi-task learning, multimedia tools and applications, vol. 78, no. 10, pp. 13131-13148, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>3.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>wangli hao, zhaoxiang zhang,  spatiotemporal distilled dense-connectivity network for video action recognition, pattern recognition, vol.92, pp. 13-24, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>4.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>guibo zhu, zhaoxiang zhang, jinqiao wang, yi wu, hanqing lu,  dynamic collaborative tracking, ieee transactions on neural networks and learning systems (tnnls), vol.30, pp. 3035-3046, 2019.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>5.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xinchu shi, haibin ling, yu pang, weiming hu, peng chu, and junliang xing,  rank-1 tensor approximation for high-order association in multi-target tracking, international journal of computer vision (ijcv), vol. 127, no. 8, pp. 1063-1083, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>6.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>hainan cui, shuhan shen, wei gao, hongmin liu, zhiheng wang.  efficient and robust large-scale structure-from-motion via track selection and camera prioritization . isprs journal of photogrammetry and remote sensing, vol. 156, october 2019, pp.202-214.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>7.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jianwei li, wei gao, yihong wu,  high-quality 3d reconstruction with depth super-resolution and completion , ieee access, no. 7, pp. 19370-19381, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>8.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yangdong liu, wei gao, zhanyi hu,  3d scanning of high dynamic scenes using an rgb-d sensor and an imu on a mobile device , ieee access, no. 7, pp. 24057-24070, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>9.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>wei wang, wei gao,  efficient multi-plane extraction from massive 3d points for modeling large-scale urban scenes , the visual computer, vol. 35, no. 5, pp. 625-638, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>10.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiang gao, shuhan shen, zhanyi hu, zhiheng wang. ground and aerial meta-data integration for localization and reconstruction: a review. pattern recognition letters, 127: 202-214, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>11.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yang zhou, shuhan shen, zhanyi hu. detail preserved surface reconstruction from point cloud. sensors, 19(6): 1278, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>12.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yihong wu, haoren wang, fulin tang, zhiheng wang. efficient conic fitting with a polar-n-direction geometric distance. pattern recognition, vol. 90, pp. 415-423, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>13.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiaomei zhao, yihong wu. automatically extract semi-transparent motion-blurred hand from a single image. ieee trans. on signal processing letters, vol. 26, no. 11, pp. 1598- 1602, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>14.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zichang tan, yang yang, jun wan*, hanyuan huang, guodong guo and stan z. li, &quot;attention based pedestrian attribute analysis&quot;, ieee transactions on image processing (tip), vol 28, no. 12, 6126-6140, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>15.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiangyu zhu, hao liu, zhen lei, hailin shi, fan yang, dong yi, guojun qi, stan z. li. large-scale bisample learning on id versus spot face recognition. international journal of computer vision (ijcv), 2019, 127(6-7): 684-700.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>16.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zhiwei liu, xiangyu zhu, ming tang, zhen lei, jinqiao wang.efficient face alignment with fast normalization and contour fitting loss,acm transactions on multimedia computing, communications, and applications (tomm), 2019, 15: 89.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>17.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xinchu shi, haibin ling, yu pang, weiming hu, peng chu, and junliang xing,  rank-1 tensor approximation for high-order association in multi-target tracking, international journal of computer vision (ijcv), vol. 127, no. 8, pp. 1063-1083, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>18.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yunze gao,&nbsp;yingying chen,&nbsp;jinqiao wang,&nbsp;ming tang,&nbsp;hanqing lu, reading scene text with fully convolutional sequence modeling.&nbsp;neurocomputing&nbsp;339:&nbsp;161-170, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>19.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>guibo zhu,&nbsp;jinqiao wang,&nbsp;peisong wang,&nbsp;yi wu,&nbsp;hanqing lu, feature distilled tracking.&nbsp;ieee trans. cybernetics 49(2):&nbsp;440-452, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>20.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiyan liu, gaofeng meng and chunhong pan. scene text detection and recognition with advances in deep learning: a survey[j]. international journal on document analysis and recognition (ijdar), 2019, 22(2): 143-162.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>21.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yabei li, zhang zhang, yanhua cheng, liang wang and tieniu tan,  mapnet: multi-modal attentive pooling network for rgb-d indoor scene classification, pattern recognition, vol. 90, pp. 436-449, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>22.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>huaibo huang, ran he, zhenan sun and tieniu tan,  wavelet domain generative adversarial network for multi-scale face hallucination, international journal of computer vision, vol. 127, no. 6-7, pp. 763-784, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>23.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>feng yu, qiang liu, shu wu, liang wang and tieniu tan,  attention-based convolutional approach for misinformation identification from massive and noisy microblog posts, computers &amp; security, vol. 83, pp. 106-121, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>24.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yupei wang, xin zhao, xuecai hu, yin li, kaiqi huang,  focal boundary guided salient object detection, ieee trans. on image processing, vol. 28, no. 6, pp. 2813-2824, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>25.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>dangwei li, zhang zhang, xiaotang chen, kaiqi huang,  a richly annotated pedestrian dataset for person retrieval in real surveillance scenarios, ieee trans. on image processing, vol. 28, no. 4, pp. 1575-1590, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>26.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>da li, zhang zhang, kai yu, kaiqi huang and tieniu tan,  isee: an intelligent scene exploration and evaluation platform for large-scale visual surveillance, ieee trans. on parallel and distributed systems, vol. 30, no.12, pp. 2743-2758.</span></p> <p class=af0><b style='mso-bidi-font-weight:normal'><span lang=en-us><o:p>&nbsp;</o:p></span></b></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189710"></a><a name="_toc24098144"></a><a name="_toc532562229"></a><a name="_toc532391198"><span style='mso-bookmark:_toc532562229'><span style='mso-bookmark:_toc24098144'><span style='mso-bookmark:_toc40189710'><b><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>�va�</span><span lang=en-us>/</span></b></span></span></span></a><span style='mso-bookmark: _toc532391198'><span style='mso-bookmark:_toc532562229'><span style='mso-bookmark:_toc24098144'><span style='mso-bookmark:_toc40189710'><b><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>ɖ��ytnr�g</span></b></span></span></span></span><a name="_toc24465893"></a><a name="_toc24361001"></a><a name="_toc532562399"><span style='mso-bookmark:_toc24361001'><span style='mso-bookmark:_toc24465893'><span style='mso-bookmark:_toc40189710'><b><span lang=en-us>image/video processing </span></b></span></span></span></a><span style='mso-bookmark:_toc24465893'><span style='mso-bookmark:_toc40189710'><b><span lang=en-us>and analysis</span></b></span></span><b><span lang=en-us><o:p></o:p></span></b></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>27.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>changde du, changying du, lijie huang, huiguang he,  reconstructing perceived images from human brain activities with bayesian deep multiview learning , ieee trans. neural netw. learning syst, 30(8): page(s): 2310-2323, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>28.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zhao zhong, zichen yang, wentao feng, wei wu, yangyang hu, cheng-lin liu,  decision controller for object tracking with deep reinforcement learning , ieee access, 7: 28069-28079, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>29.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yingying chen,&nbsp;jinqiao wang,&nbsp;bingke zhu,&nbsp;ming tang,&nbsp;hanqing lu, pixelwise deep sequence learning for moving object detection.&nbsp;ieee trans. circuits syst. video techn.&nbsp;29(9):&nbsp;2567-2579, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>30.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>songyan liu, chaoyang zhao, yunze gao, jinqiao wang, ming tang, adversarial image generation by combining content and style, ieee transactions on image processing, 13(14): 2716-2723, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>31.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>congqi cao,&nbsp;cuiling lan,&nbsp;yifan zhang,&nbsp;wenjun zeng,&nbsp;hanqing lu,&nbsp;yanning zhang, skeleton-based action recognition with gated convolutional neural networks.&nbsp;ieee trans. circuits syst. video techn.&nbsp;29(11):&nbsp;3247-3257, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>32.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yousong zhu,&nbsp;chaoyang zhao,&nbsp;haiyun guo,&nbsp;jinqiao wang,&nbsp;xu zhao,&nbsp;hanqing lu, attention couplenet: fully convolutional attention coupling network for object detection.&nbsp;ieee trans. image processing&nbsp;28(1):&nbsp;113-126, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>33.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>haiyun guo, kuan zhu, ming tang, jinqiao wang, two-level attention network with multi-grain ranking loss for vehicle re-identification, ieee trans. image processing, 28(9): 4328-4338, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>34.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>lingfeng wang, chunhong pan: visual object tracking via a manifold regularized discriminative dual dictionary model. pattern recognition 91: 272-280 (2019).</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>35.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jie gu, gaofeng meng, shiming xiang, chunhong pan: blind image quality assessment via learnable attention-based pooling. pattern recognition 91: 332-344 (2019), if:5.898</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>36.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>tingzhao yu, lingfeng wang, chaoxu guo, huxiang gu, shiming xiang, chunhong pan: pseudo low rank video representation. pattern recognition 85: 50-59 (2019)</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>37.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>tingzhao yu, lingfeng wang, cheng da, huxiang gu, shiming xiang, chunhong pan: weakly semantic guided action recognition. ieee trans. multimedia 21(10): 2504-2517 (2019)</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>38.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yunbo wang, jian liang, dong cao, zhenan sun,  local semantic-aware deep hashing with hamming-isometric quantization, ieee trans. image processing, vol. 28, no. 6, pp. 2665-2679, 2019. </span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>39.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>hongwen zhang, qi li, zhenan sun,  adversarial learning semantic volume for 2d/3d face shape regression in the wild, ieee trans. on image processing, vol. 28, no. 9, pp. 4526-4540, 2019.</span></p> <p class=af0><b><i><span lang=en-us><o:p>&nbsp;</o:p></span></i></b></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189711"></a><a name="_toc24098145"></a><a name="_toc532562230"></a><a name="_toc532391199"><span style='mso-bookmark:_toc532562230'><span style='mso-bookmark:_toc24098145'><span style='mso-bookmark:_toc40189711'><b><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>!j_ƌ r</span></b></span></span></span></a><a name="_toc24465894"></a><a name="_toc24361002"></a><a name="_toc532562400"><span style='mso-bookmark:_toc24361002'><span style='mso-bookmark:_toc24465894'><span style='mso-bookmark:_toc40189711'><b><span lang=en-us>pattern recognition</span></b></span></span></span></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>40.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>lei wang, weiliang meng, runping xi, chengcheng ma, yanning zhang, ling lu and xiaopeng zhang. 3d point cloud analysis and classification in large-scale scene based on deep learning. ieee access. 2019, 7(1): 55649-55658.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>41.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>hongjun li, weiliang meng, xinying liu, shiming xiang and xiaopeng zhang. parameter optimization criteria guided 3d point cloud classification. multimedia tools and applications.2019, 2019(78): 5081-5104.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>42.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>hao yang, chunfengyuan, bingli, yang du, junliangxing, weiming hu, and stephen j. maybank,  asymmetric 3d convolutional neural networks for action recognition, pattern recognition, vol. 85, pp. 1-12, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>43.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>haiqing ren, weiqiang wang, chenglin liu,  recognizing online handwritten chinese characters using rnns with new computing architectures , pattern recognition, 93: 179-192, 2019.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>44.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xinyu zuo, yubo chen, kang liu and jun zhao,  event coreference resolution via a multi-loss neural network without using argument information, science china information sciences2019, vol. 62, no. 11, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>45.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>hao yang, chunfengyuan, bingli, yang du, junliangxing, weiming hu, and stephen j. maybank,  asymmetric 3d convolutional neural networks for action recognition, pattern recognition, vol. 85, pp. 1-12, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>46.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zhiwei fang,&nbsp;jing liu,&nbsp;yong li,&nbsp;yanyuan qiao,&nbsp;hanqing lu. improving visual question answering using dropout and enhanced question encoder.&nbsp;pattern recognition 90:&nbsp;404-414, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>47.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>lingxiao he, haiqing li, qi zhang, and zhenan sun,  dynamic feature matching for partial face recognition , ieee trans. on image processing, vol. 28, no. 2, pp. 791-802, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>48.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>man zhang, zhaofeng he, hui zhang, tieniu tan and zhenan sun,  toward practical remote iris recognition: a boosting based framework, neurocomputing, vol.330, pp. 238-252, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>49.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yi li, lingxiao song, xiang wu, ran he and tieniu tan,  learning a bi-level adversarial network with global and local perception for makeup-invariant face verification, pattern recognition, vol. 90, pp. 99-108, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>50.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jie cao, yibo hu, bing yu, ran he, zhenan sun,  3d aided duet gans for multi-view face image synthesis, ieee trans. information forensics and security, vol. 14, no. 8, pp. 2028-2042, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>51.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jian liang, ran he, zhenan sun and tieniu tan,  aggregating randomized clustering-promoting invariant projections for domain adaptation, ieee trans. on pattern analysis and machine intelligence (pami), vol. 41, no. 5, pp. 1027-1042, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>52.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>ran he, xiang wu, zhenan sun and tieniu tan,  wasserstein cnn: learning invariant features for nir-vis face recognition, ieee trans. on pattern analysis and machine intelligence (pami), vol. 41, no. 7, pp. 1761-1773, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>53.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>chunshui cao, yongzhen huang, yi yang, liang wang, zilei wang and tieniu tan,  feedback convolutional neural network for visual localization and segmentation, ieee trans. on pattern analysis and machine intelligence (pami), vol. 41, no. 7, pp. 1627-1640, 2019. </span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>54.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>chunfeng song, yongzhen huang, yan huang, ning jia, and liang wang, gaitnet: an end-to-end network for video-based human identication, pattern recognition, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>55.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yuqi zhang, yongzhen huang, liang wang, shiqi yu,  a comprehensive study on gait biometrics via a joint cnn-based method, pattern recognition, vol. 93, pp. 228-236, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>56.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yanyun wang, chunfeng song, yan huang, zhenyu wang, liang wang,  learning view invariant gait features with two-stream gan, neurocomputing, vol. 339, pp. 245-254, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>57.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>linjiang huang, yan huang, wanli ouyang, liang wang,  part-aligned pose-guided recurrent network for action recognition, pattern recognition, vol. 92, pp. 162-176.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>58.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yuwei wang, yi zeng, jianbo tang and bo xu. biological neuron coding inspired binary word embeddings. cognitive computation, springer, 11:676 684, 2019.</span></p> <p class=af0><b style='mso-bidi-font-weight:normal'><i><span lang=en-us><o:p>&nbsp;</o:p></span></i></b></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189712"></a><a name="_toc24098146"></a><a name="_toc532562231"></a><a name="_toc532391200"><span style='mso-bookmark:_toc532562231'><span style='mso-bookmark:_toc24098146'><span style='mso-bookmark:_toc40189712'><b><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>:ghvf[`n</span></b></span></span></span></a><a name="_toc24465895"></a><a name="_toc24361003"></a><a name="_toc532562401"><span style='mso-bookmark:_toc24361003'><span style='mso-bookmark:_toc24465895'><span style='mso-bookmark:_toc40189712'><b><span lang=en-us>machine learning</span></b></span></span></span></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>59.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>hanyang peng, cheng-lin liu,  discriminative feature selection via employing smooth and robust hinge loss , ieee trans. neural networks and learning systems, 30(3): 788-802, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>60.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>ting-bing xu, peipei yang, xu-yao zhang, cheng-lin liu,  lightweightnet: toward fast and lightweight convolutional neural networks via architecture distillation , pattern recognition, 88: 272-284, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>61.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiao-bo jin, xu-yao zhang, kaizhu huang, guang-gang geng,  stochastic conjugate gradient algorithm with variance reduction , ieee trans. neural networks and learning systems, 30(5): 1360-1369, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>62.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>guibo zhu,&nbsp;zhaoxiang zhang,&nbsp;jinqiao wang,&nbsp;yi wu,&nbsp;hanqing lu, dynamic collaborative tracking.&nbsp;ieee trans. neural netw. learning syst.&nbsp;30(10):&nbsp;3035-3046, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>63.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>qi zhang, jianlong chang, gaofeng menga, shibiao xua, shiming xiang, chunhong pan. learning graph structure via graph convolutional networks. pattern recognition, 2019: 308-318.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>64.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>cheng da, gaofeng meng, shiming xiang, kun ding, shibiao xu, qing yang, chunhong pan: nonlinear asymmetric multi-valued hashing. ieee transactions on pattern analysis and machine intelligence, 41(11): 2660-2676 (2019), if: 17.730</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>65.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>peipei li, yibo hu, ran he, zhenan sun,  global and local consistent wavelet-domain age synthesis, ieee trans. on information forensics and security, vol. 14, no. 11, pp. 2943-2957, 2019.</span></p> <p class=af0><b style='mso-bidi-font-weight:normal'><span lang=en-us><o:p>&nbsp;</o:p></span></b></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189713"></a><a name="_toc24098147"></a><a name="_toc532562232"></a><a name="_toc532391201"><span style='mso-bookmark:_toc532562232'><span style='mso-bookmark:_toc24098147'><span style='mso-bookmark:_toc40189713'><b><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>pencc�c</span></b></span></span></span></a><a name="_toc24465896"></a><a name="_toc24361004"></a><a name="_toc532562402"><span style='mso-bookmark:_toc24361004'><span style='mso-bookmark:_toc24465896'><span style='mso-bookmark:_toc40189713'><b><span lang=en-us>data mining</span></b></span></span></span></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>66.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>qiang cui, shu wu, yan huang, liang wang,  a hierarchical contextual attention-based network for sequential recommendation, neurocomputing, vol. 358, pp. 141-149, 2019.</span></p> <p class=af0><b style='mso-bidi-font-weight:normal'><i><span lang=en-us><o:p>&nbsp;</o:p></span></i></b></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189714"></a><a name="_toc24098148"></a><a name="_toc532562233"></a><a name="_toc532391202"><span style='mso-bookmark:_toc532562233'><span style='mso-bookmark:_toc24098148'><span style='mso-bookmark:_toc40189714'><b><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>���{:g�vb_f[</span></b></span></span></span></a><a name="_toc24465897"></a><a name="_toc24361005"></a><a name="_toc532562403"><span style='mso-bookmark:_toc24361005'><span style='mso-bookmark:_toc24465897'><span style='mso-bookmark:_toc40189714'><b><span lang=en-us>computer graphics</span></b></span></span></span></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>67.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>meng yang, juntao ye, frank ding, yubo zhang, dong-ming yan. a semi-explicit surface tracking mechanism for multi-phase immiscible liquids. ieee trans. visualization and computer graphics, 25(10), pages 2873-2885, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>68.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jianwei guo, shibiao xu, dong-ming yan, zhanglin cheng, marc jaeger, xiaopeng zhang. realistic procedural plant modeling from multiple view images. ieee transactions on visualization and computer graphics, 2019, online</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>69.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jianwei guo, fan ding, xiaohong jia, dong-ming yan. automatic and high-quality surface mesh generation for cad models. computer-aided design, volume 109, pages 49-59, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>70.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yiqun wang, dong-ming yan, xiaohan liu, chengcheng tang, jianwei guo, xiaopeng zhang, peter wonka: isotropic surface remeshing without large and small angles. ieee trans. vis. comput. graph. 25(7): 2430-2442 (2019)</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>71.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>qunce xu, dong-ming yan, wenbin li, yong-liang yang. anisotropic surface remeshing without obtuse angles. computer graphics forum (pacific graphics), 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>72.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>m. yuan, l. dai, d.-m. yan, l. zhang, x. zhang. fast and error-bounded space-variant bilateral filtering. journal of computer science and technology. 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>73.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>c. rao, l. tian, d.-m. yan, s. liao, d. oliver, l. lu. consistently fitting orthopaedic casts. computer-aided geometric design, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>74.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>y. gao, l. wu, d.-m. yan, l. nan. near support-free multi-directional 3d printig via global-optimal decomposition. graphical models, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>75.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>bin fan, qingqun kong, xinchao wang, zhiheng wang, shiming xiang, chunhong pan, and pascal fua. &quot;a performance evaluation of local features for image based 3d reconstruction&quot;. ieee transactions on image processing, 28(10): 4774 - 4789, 2019.</span></p> <p class=af0><span lang=en-us style='mso-bidi-font-weight:bold'><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189715"></a><a name="_toc24098149"></a><a name="_toc532562234"></a><a name="_toc532391203"><span style='mso-bookmark:_toc532562234'><span style='mso-bookmark:_toc24098149'><span style='mso-bookmark:_toc40189715'><b><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>y�zso���{</span></b></span></span></span></a><a name="_toc24465898"></a><a name="_toc24361006"></a><a name="_toc532562404"><span style='mso-bookmark:_toc24361006'><span style='mso-bookmark:_toc24465898'><span style='mso-bookmark:_toc40189715'><b><span lang=en-us>multimedia computing</span></b></span></span></span></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>76.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yingying deng, fan tang, weiming dong, fuzhang wu, oliver deussen, changsheng xu,  selective clustering for representative paintings selection, multimedia tools and applications, vol. 78, no. 14, pp. 19305-19323, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>77.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiaoshan yang, changsheng xu: image captioning by asking questions. acm transactions on multimedia computing, communications, and applications (tomm) 15(2s): 55:1-55:19, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>78.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>fan qi, xiaoshan yang, tianzhu zhang, and changsheng xu: discriminative multimodal embedding for event classification, neurocomputing, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>79.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>cuirong long, xiaoshan yang, changsheng xu: cross-domain personalized image captioning, multimedia tools and applications, 2019: 1-16.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>80.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>hantao yao, feng dai, shiliang zhang, yongdong zhang, qi tian, changsheng xu,  dr2-net: deep residual reconstruction network for image compressive sensing . neurocomputing 359: 483-493 (2019)</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>81.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>hantao yao, shiliang zhang, richang hong, yongdong zhang, changsheng xu, qi tian,  deep representation learning with part loss for person re-identification . ieee trans. image processing 28(6): 2860-2871 (2019)</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>82.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>feng xue, jianwei wang, shengsheng qian, tianzhu zhang, xueliang liu, and changsheng xu: multi-modal max-margin supervised topic model for social event analysis. multimedia tools appl. 78(1): 141-160 (2019)</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>83.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>junyu gao, tianzhu zhang, changsheng xu: smart: joint sampling and regression for visual tracking. ieee trans. image processing 28(8): 3923-3935 (2019)</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>84.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xinhong ma , tianzhu zhang , changsheng xu : deep multi-modality adversarial networks for unsupervised domain adaptation. ieee trans. multimedia 21(9): 2419-2431 (2019)</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>85.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jun hu, shengsheng qian, quan fang, xueliang liu, changsheng xu: a2cmhne: attention-aware collaborative multimodal heterogeneous network embedding. tomccap 15(2): 45:1-45:17 (2019)</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>86.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zhiwei fang,&nbsp;jing liu,&nbsp;xueliang liu,&nbsp;qu tang,&nbsp;yong li,&nbsp;hanqing lu, btdp: toward sparse fusion with block term decomposition pooling for visual question answering.&nbsp;tomm&nbsp;15(2s):&nbsp;50:1-50:21, 2019</span></p> <p class=af0><span lang=en-us><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189716"></a><a name="_toc24098150"></a><a name="_toc532562236"></a><a name="_toc532391205"><span style='mso-bookmark:_toc532562236'><span style='mso-bookmark:_toc24098150'><span style='mso-bookmark:_toc40189716'><b><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>;sf[�v�pr�g</span></b></span></span></span></a><a name="_toc24465899"></a><a name="_toc24361007"></a><a name="_toc532562406"><span style='mso-bookmark:_toc24361007'><span style='mso-bookmark:_toc24465899'><span style='mso-bookmark:_toc40189716'><b><span lang=en-us>medical image analysis</span></b></span></span></span></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>87.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>longwei fang, zuowei wang, zhiqiang chen, fengzeng jian, shuo li, huiguang he,  3d shape reconstruction of lumbar vertebra from two x-ray images and a ct model , ieee/caa journal of automatica sinica, vol 10</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>pages 1-10, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>88.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>longwei fang, lichi zhang, dong nie, xiaohuan cao, islem rekik, seongwhan lee, huiguang he, dinggang shen,  automatic brain labeling via multi-atlas guided fully convolutional networks , medical image analysis, volume 51, pages 157-168, 2019</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>89.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yuan lin, linlin li, nie wei, xiaolei liu, avital adler, chi xiao, fujian lu, liping wang, hua han, xianhua wang, wen-biao gan, heping cheng, brain activity regulates loose coupling between mitochondrial and cytosolic ca^(2 ) transients, nature communications, vol. 10, no. 1, pp. 1-13, 2019</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>90.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>fu z, tu y, di x, du y, sui j, biswal bb, zhang z, de lacy n, calhoun vd. transient increased thalamic-sensory connectivity and decreased whole-brain dynamism in autism. neuroimage. 2019; 190:191-204.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>91.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>hu g, huang x, jiang t, yu s. multi-scale expressions of one optimal state regulated by dopamine in the prefrontal cortex. front physiol. 2019; 10:113.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>92.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jiang r, zuo n, ford jm, qi s, zhi d, zhuo c, xu y, fu z, bustillo j, turner ja, calhoun vd, sui j. task-induced brain connectivity promotes the detection of individual differences in brain-behavior relationships. neuroimage. 2019:116370.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>93.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>li j, wang l, zhang x, liu l, li j, chan mf, sui j, yang r. machine learning for patient-specific quality assurance of vmat: prediction and classification accuracy. int j radiat oncol biol phys. 2019; 105(4):893-902.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>94.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>li j, zhang x, li j, jiang r, sui j, chan mf, yang r. impact of delivery characteristics on dose delivery accuracy of volumetric modulated arc therapy for different treatment sites. j radiat res. 2019; 60(5):603-11.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>95.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>li x, wu d, cui y, liu b, walter h, schumann g, li c, jiang t. reliable heritability estimation using sparse regularization in ultrahigh dimensional genome-wide association studies. bmc bioinformatics. 2019; 20(1):219.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>96.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>liu h, jian m, liu s, li a, li s, fang j, liang f, liu b, han r. preserved individual differences in functional connectivity patterns under dexmedetomidine-induced sedation. neurosci lett. 2019; 707:134289.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>97.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>liu s, li a, zhu m, li j, liu b. genetic influences on cortical myelination in the human brain. genes brain behav. 2019; 18(4):e12537.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>98.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>liu s, wang h, song m, lv l, cui y, liu y, fan l, zuo n, xu k, du y, yu q, luo n, qi s, yang j, xie s, li j, chen j, chen y, wang h, guo h, wan p, yang y, li p, lu l, yan h, yan j, wang h, zhang h, zhang d, calhoun vd, jiang t, sui j. linked 4-way multimodal brain differences in schizophrenia in a large chinese han population. schizophrenia bulletin. 2019; 45(2):436-49.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>99.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>liu x, li y, li s, fan x, sun z, yang z, wang k, zhang z, jiang t, liu y, wang l, wang y. idh mutation-specific radiomic signature in lower-grade gliomas. aging (albany ny). 2019; 11(2):673-96.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>100.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>luo n, tian l, calhoun vd, chen j, lin d, vergara vm, rao s, yang j, zhuo c, xu y, turner ja, zhang f, sui j. brain function, structure and genomic data are linked but show different sensitivity to duration of illness and disease stage in schizophrenia. neuroimage clin. 2019; 23:101887.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>101.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>miller sr, yu s, plenz d. the scale-invariant, temporal profile of neuronal avalanches in relation to cortical gamma-oscillations. sci rep. 2019; 9(1):16403.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>102.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>niu w, huang x, xu k, jiang t, yu s. pairwise interactions among brain regions organize large-scale functional connectivity during execution of various tasks. neuroscience. 2019; 412:190-206.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>103.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>qi s, sui j, chen j, liu j, jiang r, silva r, iraji a, damaraju e, salman m, lin d, fu z, zhi d, turner ja, bustillo j, ford jm, mathalon dh, voyvodic j, mcewen s, preda a, belger a, potkin sg, mueller ba, adali t, calhoun vd. parallel group ica ica: joint estimation of linked functional network variability and structural covariation with application to schizophrenia. hum brain mapp. 2019; 40(13):3795-809.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>104.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>qin j, sui j, ni h, wang s, zhang f, zhou z, tian l. the shared and distinct white matter networks between drug-naive patients with obsessive-compulsive disorder and schizophrenia. front neurosci. 2019; 13:96.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>105.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>salman ms, du y, lin d, fu z, fedorov a, damaraju e, sui j, chen j, mayer ar, posse s, mathalon dh, ford jm, van erp t, calhoun vd. group ica for identifying biomarkers in schizophrenia: 'adaptive' networks via spatially constrained ica show more sensitivity to group differences than spatio-temporal regression. neuroimage clin. 2019; 22:101747.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>106.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>su c, jiang j, zhang s, shi j, xu k, shen n, zhang j, li l, zhao l, zhang j, qin y, liu y, zhu w. radiomics based on multicontrast mri can precisely differentiate among glioma subtypes and predict tumour-proliferative behaviour. eur radiol. 2019; 29(4):1986-96.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>107.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>tang j, li y, xu j, qin w, su q, xu q, liu b, jiang t, yu c. impact of comt haplotypes on functional connectivity density and its association with the gene expression of dopamine receptors. brain struct funct. 2019; 224(8):2619-30.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>108.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>wang d, hu l, xu x, ma x, li y, liu y, wang q, zhuo c. kibra and apoe gene variants affect brain functional network connectivity in healthy older people. j gerontol a biol sci med sci. 2019; 74(11):1725-33.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>109.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>wang j, becker b, wang l, li h, zhao x, jiang t. corresponding anatomical and coactivation architecture of the human precuneus showing similar connectivity patterns with macaques. neuroimage. 2019; 200:562-74.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>110.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>xia x, fan l, cheng c, yao r, deng h, zhao d, li h, jiang t. interspecies differences in the connectivity of ventral striatal components between humans and macaques. front neurosci. 2019; 13:623.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>111.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>xia x, fan l, hou b, zhang b, zhang d, cheng c, deng h, dong y, zhao x, li h, jiang t. fine-grained parcellation of the macaque nucleus accumbens by high-resolution diffusion tensor tractography. front neurosci. 2019; 13:709.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>112.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>xie s, liu b, wang j, zhou y, cui y, song m, chen y, li p, lu l, lv l, wang h, yan h, yan j, zhang h, zhang d, jiang t. hyperconnectivity in perisylvian language pathways in schizophrenia with auditory verbal hallucinations: a multi-site diffusion mri study. schizophr res. 2019; 210:262-9.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>113.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yan j, cui y, li q, tian l, liu b, jiang t, zhang d, yan h. cortical thinning and flattening in schizophrenia and their unaffected parents. neuropsychiatr dis treat. 2019; 15:935-46.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>114.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yan w, calhoun v, song m, cui y, yan h, liu s, fan l, zuo n, yang z, xu k, yan j, lv l, chen j, chen y, guo h, li p, lu l, wan p, wang h, wang h, yang y, zhang h, zhang d, jiang t, sui j. discriminating schizophrenia using recurrent neural network applied on time courses of multi-site fmri data. ebiomedicine. 2019; 47:543-52.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>115.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yan x, wang y, xu l, liu y, song s, ding k, zhou y, jiang t, lin x. altered functional connectivity of the primary visual cortex in adult comitant strabismus: a resting-state functional mri study. curr eye res. 2019; 44(3):316-23.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>116.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yang y, liu s, jiang x, yu h, ding s, lu y, li w, zhang h, liu b, cui y, fan l, jiang t, lv l. common and specific functional activity features in schizophrenia, major depressive disorder, and bipolar disorder. front psychiatry. 2019; 10:52.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>117.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yu q, chen j, du y, sui j, damaraju e, turner ja, van erp tgm, macciardi f, belger a, ford jm, mcewen s, mathalon dh, mueller ba, preda a, vaidya j, pearlson gd, calhoun vd. a method for building a genome-connectome bipartite graph model. j neurosci methods. 2019; 320:64-71.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>118.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zeng g, chen y, cui b, yu s. continual learning of context-dependent processing in neural networks. nature machine intelligence. 2019; 1(8):364-72.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>119.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zeng g, huang x, jiang t, yu s. short-term synaptic plasticity expands the operational range of long-term synaptic changes in neural networks. neural netw. 2019; 118:140-7.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>120.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zhang j, zhang j, hu g, and chen y, yu s. scalenet: a convolutional network to extract multi-scale and fine-grained visual features. ieee access. 2019; 7:147560-70.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>121.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zhang z, chen y, mi y, hu g. reconstruction of dynamic networks with time-delayed interactions in the presence of fast-varying noises. phys rev e. 2019; 99(4-1):042311.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>122.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zheng f, yan l, zhong b, yang z, xie w. progression of cognitive decline before and after incident stroke. neurology. 2019; 93(1):e20-e8.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>123.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zhou w, jin y, meng q, zhu x, bai t, tian y, mao y, wang l, xie w, zhong h, zhang n, luo mh, tao w, wang h, li j, li j, qiu bs, zhou jn, li x, xu h, wang k, zhang x, liu y, richter-levin g, xu l, zhang z. a neural circuit for comorbid depressive symptoms in chronic pain. nat neurosci. 2019; 22(10):1649-58.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>124.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zhu w, huang h, yang s, luo x, zhu w, xu s, meng q, zuo c, zhao k, liu h, liu y, wang w. dysfunctional architecture underlies white matter hyperintensities with and without cognitive impairment. journal of alzheimer's disease: jad. 2019; 71(2):461-76.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>125.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zuo n, salami a, yang y, yang z, sui j, jiang t. activation-based association profiles differentiate network roles across cognitive loads. hum brain mapp. 2019; 40(9):2800-12.</span></p> <p class=af0><b style='mso-bidi-font-weight:normal'><span lang=en-us><o:p>&nbsp;</o:p></span></b></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189717"><b><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>pg�e�yf[</span><span lang=en-us>materials science</span></b></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;line-height:normal;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-bidi-font-size:10.5pt;mso-fareast-font-family:"times new roman"; mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>126.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us style='mso-bidi-font-size:10.5pt'>zi wang, lina zhang, weifu li, zijun qin, zexin wang, zihang li, liming tan, lilong zhu, feng liu, hua han, liang jiang, high throughput experiment and machine learning assisted discovery of new ni-base superalloys, scripta materialia, vol. 178, pp. 134-138, 2019<o:p></o:p></span></p> <p class=af0><b style='mso-bidi-font-weight:normal'><i style='mso-bidi-font-style: normal'><span lang=en-us><o:p>&nbsp;</o:p></span></i></b></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189718"></a><a name="_toc24098151"></a><a name="_toc532562237"></a><a name="_toc532391206"><span style='mso-bookmark:_toc532562237'><span style='mso-bookmark:_toc24098151'><span style='mso-bookmark:_toc40189718'><b><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>�����b/g</span></b></span></span></span></a><a name="_toc24465900"></a><a name="_toc24361008"></a><a name="_toc532562407"><span style='mso-bookmark:_toc24361008'><span style='mso-bookmark:_toc24465900'><span style='mso-bookmark:_toc40189718'><b><span lang=en-us>speech and language technology</span></b></span></span></span></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>127.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>long zhou, jiajun zhang, chengqing zong.synchronous bidirectional neural machine translation, transactions of association for computational linguistics (tacl), vol. 7, pp. 91-105, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>128.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>jiajun zhang, yang zhao, haoran li and chengqing zong. attention with sparsity regularization for neural machine translation and summarization. ieee/acm transactions on audio, speech and language processing, vol. 27, no.3, pp. 507-518, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>129.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>haoran li, junnan zhu, cong ma, jiajun zhang and chengqing zong. read, watch, listen and summarize: multi-modal summarization for asynchronous text, image, audio and video. transactions on knowledge and data engineering (tkde), vol. 31, no. 5, may 2019, pages 996-1009.<span style='mso-spacerun:yes'>� </span>print issn: 1041-4347, online issn: 1041-4347, digital object identifier: 10.1109/tkde.2018.2848260</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>130.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>guoping huang, jiajun zhang, yu zhou and chengqing zong. input method for human translators: a novel approach to integrate machine translation effectively and imperceptibly. acm transactions on asian and low-resource language information processing (tallip), vol. 18, no. 1, article 4, 22 pages, january 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>131.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>jiangyan yi, jianhua tao, zhengqi wen, ye bai,  language-adversarial transfer learning for low-resource speech recognition , ieee/acm trans. audio, speech &amp; language processing, 2019;27(3)621-630</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>132.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zipeng zhao, zhongtian bao, zixing zhang, jun deng, nicholas cummins, haishuai wang, jianhua tao, bjorn schuller,  automatic assessment of depression from speech via a hierarchical attention transfer network and attention autoencoders , journal of selected topics in signal processing, vol. 14, no. 8, august 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>133.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yibin zheng, jianhua tao, zhengqi wen, jiangyan yi,  forward backward decoding sequence for regularizing end-to-end tts , ieee/acm trans. audio, speech &amp; language processing, 2019;27(12): 2067-2079</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>134.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>xinyu xiao, lingfeng wang, kun ding, shiming xiang, chunhong pan, &quot;deep hierarchical encoder-decoder network for image captioning,&quot; in ieee transactions on multimedia 21(11): 2942-2956 (2019).</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l4 level1 lfo4'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>135.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>xinyu xiao, lingfeng wang, kun ding, shiming xiang, chunhong pan, dense semantic embedding network for image captioning, pattern recognition 90: 285-296 (2019).</span></p> <p class=af0><span lang=en-us><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:2'><a name="_toc40189719"></a><a name="_toc24098152"></a><a name="_toc532562238"></a><a name="_toc532391207"><span style='mso-bookmark:_toc532562238'><span style='mso-bookmark:_toc24098152'><span style='mso-bookmark:_toc40189719'><b style='mso-bidi-font-weight:normal'><span style='font-size:12.0pt;mso-bidi-font-size:11.0pt;line-height:110%; font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>�v�q rir</span></b></span></span></span></a><a name="_toc24465901"></a><a name="_toc24361009"></a><a name="_toc532562408"></a><span style='mso-bookmark:_toc532562408'><span style='mso-bookmark:_toc24361009'><span style='mso-bookmark:_toc24465901'><span style='mso-bookmark:_toc40189719'><b style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt; mso-bidi-font-size:11.0pt;line-height:110%'>national journals</span></b></span></span></span></span><b style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt; mso-bidi-font-size:11.0pt;line-height:110%'><o:p></o:p></span></b></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l3 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>changde du, jinpeng li, lijie huang, huiguang he,  brain encoding and decoding in fmri with bidirectional deep generative models , engineering, volume 5, issue 5, pages 948-953, 2019.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l3 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>2.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jiali han, shuhan shen. scalable point cloud meshing for image based large scale 3d modeling. visual computing for industry, biomedicine, and art, 2(10): 1-10, 2019.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l3 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>3.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiang gao, hainan cui, lingjie zhu, tianxin shi, shuhan shen. multi-source data based 3d digital preservation of large-scale ancient chinese architecture: a case report. virtual reality &amp; intelligent hardware, 1(5): 525-541 2019.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l3 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>4.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiaomei zhao, fulin tang and yihong wu. real time human segmentation by bowtienet and a slam based human ar system, virtual reality &amp; intelligent hardware, vol 1. issue 5, pp. 511-524, 2019.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l3 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>5.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>m. yuan, l. dai, d. yan, l. zhang, j. xiao, x. zhang: fast and error-bounded space-variant bilateral filtering. j. comput. sci. technol. 34(3): 550-568 2019.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l3 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>6.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>hao wang, qingyuan zhu, lufeng ding, yan shen, chao-yu yang, fang xu, chang shu, yujie guo, zhiwei xiong, qinghong shan, fan jia, peng su, qian-ru yang, bing li, yuxiao cheng, xiaobin he, xi chen, feng wu, jiang-ning zhou, fuqiang xu, hua han, pak-ming lau, guo-qiang bi</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>scalable volumetric imaging for ultrahigh-speed brain mapping at synaptic resolution. national science review, vol. 6, no. 5, pp. 982-992, 2019</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l3 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>7.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>li j, jin d, li a, liu b, song c, wang p, wang d, xu k, yang h, yao h, zhou b, bejanin a, chetelat g, han t, lu j, wang q, yu c, zhang x, zhou y, zhang x, jiang t, liu y, han y. asaf: altered spontaneous activity fingerprinting in alzheimer s disease based on multisite fmri. science bulletin. 2019; 64(14):998-1010.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l3 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>8.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yang w, liu y, tu z, xiao c, yan s, ma x, guo x, chen x, yin p, yang z, yang s, jiang t, li s, qin c, li xj. crispr/cas9-mediated pink1 deletion leads to neurodegeneration in rhesus monkeys. cell res. 2019; 29(4):334-6.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l3 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>9.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zhang df, fan y, xu m, wang g, wang d, li j, kong ll, zhou h, luo r, bi r, wu y, li gd, li m, luo xj, jiang hy, tan l, zhong c, fang y, zhang c, sheng n, jiang t, yao yg. complement c7 is a novel risk gene for alzheimer's disease in han chinese. natl sci rev. 2019; 6(2):257-74.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo6; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>10.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>wei wang, wei gao, zhanyi hu,  effectively modeling piecewise planar urban scenes based on structure priors and cnn , science china-information sciences, vol. 62, no. 2, pp. 29102, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l3 level1 lfo6; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>11.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jianhua tao, jian huang, ya li, zheng lian, mingyue niu,  semi-supervised ladder networks for speech emotion recognition , international journal of automation and computing, vol.16 no.4, august 2019, 437-448</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l3 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>12.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>�x[*� �r�e �v��^ns �)nck�h �f_l�q � n�y�w�nws�y^y�~q�~�v�z0r�z��r�y�e�l � 0�o�syt 0 �</span><span lang=en-us>2019</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>t^</span><span lang=en-us>4</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>g �</span><span lang=en-us>vol.35</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> �</span><span lang=en-us>no.4</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l3 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>13.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>v�</span><span style='font-family:�[so'>�^ns<span lang=en-us>,</span>hgfim<span lang=en-us>*,</span>�s�_o�<span lang=en-us>,</span>�ssfz<span lang=en-us>,</span>��n<span lang=en-us>,</span>jl�nwm<span lang=en-us>,</span>�f,</span>�sޘ<span lang=en-us>,</span>�s�~��<span lang=en-us>,</span>r�e<span lang=en-us>,</span>��_^<span lang=en-us>,</span>xo*�<span lang=en-us>,</span>h��e�b</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us> </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>�ẽag�n n�v^��c�_y�s��6q�n�nkb/g�s�x</span><span lang=en-us> </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'> � 0o��nf[�b 0 �</span><span lang=en-us>2019</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>t^,{</span><span lang=en-us>10</span><span style='font-family: �[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'>g 0�6q�n:g�n�n�eۏu\n r 0</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l3 level1 lfo6;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>14.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>hgfim</span><span lang=en-us>*</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'> �v��^ns �</span><span style='font-family: �[so'> y!j`�n:g�[݋��n�n_f[`n���ra�s͑�� </span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> � 0mr�l�yf[ 0 � 0mr�l�yf[</span><span lang=en-us>-</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>�n�]zf��n�� 0</span><span lang=en-us>2019</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>t^,{</span><span lang=en-us>2</span><span style='font-family: �[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'>g</span></p> <p class=af0><b><span lang=en-us><o:p>&nbsp;</o:p></span></b></p> <p class=af0 style='mso-outline-level:2'><a name="_toc40189720"></a><a name="_toc24098153"></a><a name="_toc532562239"></a><a name="_toc532391208"><span style='mso-bookmark:_toc532562239'><span style='mso-bookmark:_toc24098153'><span style='mso-bookmark:_toc40189720'><b><span style='font-size:12.0pt; mso-bidi-font-size:11.0pt;line-height:110%;font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>�ve�o��</span></b></span></span></span></a><a name="_toc24465902"></a><a name="_toc24361010"></a><a name="_toc532562409"></a><span style='mso-bookmark:_toc532562409'><span style='mso-bookmark:_toc24361010'><span style='mso-bookmark:_toc24465902'><span style='mso-bookmark:_toc40189720'><b><span lang=en-us style='font-size:12.0pt;mso-bidi-font-size:11.0pt;line-height: 110%'>international conferences</span></b></span></span></span></span><b><span lang=en-us style='font-size:12.0pt;mso-bidi-font-size:11.0pt;line-height: 110%'><o:p></o:p></span></b></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189721"></a><a name="_toc24098154"></a><a name="_toc532562240"></a><a name="_toc532391209"><span style='mso-bookmark:_toc532562240'><span style='mso-bookmark:_toc24098154'><span style='mso-bookmark:_toc40189721'><b><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>���{:gɖɉ</span></b></span></span></span></a><a name="_toc24465903"></a><a name="_toc24361011"></a><a name="_toc532562410"><span style='mso-bookmark:_toc24361011'><span style='mso-bookmark:_toc24465903'><span style='mso-bookmark:_toc40189721'><b><span lang=en-us>computer vision</span></b></span></span></span></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yong zhang, baoyuan wu, weiming dong, zhifeng li, wei liu, bao-gang hu, qiang ji,  joint representation and estimator learning for facial action unit intensity estimation. ieee conference on computer vision and pattern recognition (cvpr), pp. 3457-3466, 2019, long beach, ca, usa.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>2.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yi huang, xiaoshan yang, changsheng xu: time-guided high-order attention model of longitudinal heterogeneous healthcare data. pacific rim international conference on artificial intelligence (pricai): pp. 57-70, cuvu, yanuca island, fiji, august 26-30, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>3.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>wenkai dong, zhaoxiang zhang, tieniu tan,  attention-aware sampling via deep reinforcement learning for action recognition, the thirty-third aaai conference on artificial intelligence, aaai 2019, january 27-february 1, 2019, hawaii, usa.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>4.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>qing en, lijuan duan, zhaoxiang zhang, xiang bai, yundong zhang,  human-like delicate region erasing strategy for weakly supervised detection, the thirty-third aaai conference on artificial intelligence, aaai 2019, january 27-february 1, 2019, hawaii, usa.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>5.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yong zhao, shibiao xu, shuhui bu, hongkai jiang, pengcheng han,  gslam: a general slam framework and benchmark, proc. ieee international conference on computer vision, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>6.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yiqun wang, jianwei guo, dong-ming yan, kai wang, and xiaopeng zhang. a robust local spectral descriptor for matching non-rigid shapes with incompatible shape structures. ieee conference on computer vision and pattern recognition (cvpr), pp. 6231-6240, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>7.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zhao yang, qiang wang, luca bertinetto, weiming hu, song bai, and philip h. s. torr,  anchor diffusion for unsupervised video object segmentation, ieee international conference on computer vision (iccv), pp. 931-940</span><span style='font-family:�[so; mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>8.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>qiang wang, li zhang, luca bertinetto, weiming hu, and philip h.s. torr,  fast online object tracking and segmentation: a unifying approach, ieee conference on computer vision and pattern recognition (cvpr), pp. 1328-1338, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>9.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yufan liu, jiajiong cao, bing li, chunfeng yuan, weiming hu, yangxi li and yunqiang duan,  knowledge distillation via instance relationship graph, ieee conference on computer vision and pattern recognition (cvpr), pp. 7096-7104, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>10.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>liang sun, bing li, chunfeng yuan, zhengjun zha and weiming hu,  multimodal semantic attention network for video captioning, ieee intermational conference on multimedia and expo(icme), pp. 1300-1305, 2019.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>11.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jinxu liu, wei gao, zhanyi hu,  visual-inertial odometry tightly coupled with wheel encoder adopting robust initialization and online extrinsic calibration , proc. ieee/rsj international conference on intelligent robots and systems, pp. 5391-5397, november 2019, macau, china.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>12.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jiali han, shuhan shen. distributed surface reconstruction from point cloud for city-scale scenes, international conference on 3d vision, 3dv 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>13.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yang zhou, shuhan shen, zhanyi hu. active semantic labeling of street view point clouds. international conference on multimedia and expo, icme 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>14.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>tianxin shi, shuhan shen, xiang gao, lingjie zhu. visual localization using sparse semantic 3d map. international conference on image processing, icip 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>15.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>fulin tang, heping li, yihong wu. fmd stereo slam: fusing mvg and direct formulation towards accurate and fast stereo slam. icra, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>16.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>lang wu, yihong wu. similarity hierarchy based place recognition by deep supervised hashing for slam. iros 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>17.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiaomei zhao and yihong wu. automatic motion-blurred hand matting for human soft segmentation in videos. icip 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>18.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zikun liu, chunyang li, yinglu liu, zifeng lian, yihong wu. self-supervised classification assisted segmentation network for human parsing. icip 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>19.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zichang tan, yang yang, jun wan, guodong guo, stan z. li, &quot;deeply-learned hybrid representation for facial age estimation&quot;, ijcai, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>20.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>ajian liu, jun wan, sergio escalera, hugo jair escalante, zichang tan, qi yuan, kai wang, chi lin, guodong guo, isabelle guyon, stan z. li, &quot;multi-modal face anti-spoo�ng attack detection challenge at cvpr2019&quot;, cvpr workshop, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>21.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>shifeng zhang, xiaobo wang, ajian liu, chenxu zhao, jun wan, sergio escalera, hailin shi, zezheng wang, stan z. li, &quot;a dataset and benchmark for large-scale multi-modal face anti-spoofing&quot;, cvpr, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>22.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>lu zhang, xiangyu zhu, xiangyu chen, xu yang, zhen lei, zhiyong liu.weakly aligned cross-modal learning for multispectral pedestrian detection,proceedings of the ieee international conference on computer vision (iccv). 2019: 5127-5137.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>23.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zhiwei liu*, xiangyu zhu*, guosheng hu, haiyunguo, ming tang, zhen lei, neil m. robertson, jinqiao wang. semantic alignment: finding semantically consistent ground-truth for facial landmark detection,in proceedings of the ieee conference on computer vision and pattern recognition (cvpr). 2019: 3467-3476.(*co-first author)</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>24.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>hao liu, xiangyu zhu, zhen lei, stan z. li.adaptiveface: adaptive margin and sampling for face recognition,in proceedings of the ieee conference on computer vision and pattern recognition (cvpr). 2019: 3467-3476.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>25.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jianzhuguo, xiangyu zhu, jinchuan xiao, zhen lei, genxun wan, stan z li.improving face anti-spoofing by 3d virtual synthesis,iapr international conference on biometrics (icb), 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>26.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>chubin zhuang, shifeng zhang, zhen lei, xiangyu zhu, jinqiao wang. fldet: a cpu real-time joint face and landmark detector, iapr international conference on biometrics (icb), 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>27.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>sufang zhang, qinghai miao, xiangyu zhu, yingying chen, zhen lei, jinqiao wang.pose-weighted gan for photorealistic face frontalization,ieee international conference on image processing (icip). ieee, 2019: 2384-2388.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>28.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>lei ju, xiangyu zhu, zhen lei, xinfang cui, wankou yang, changyin sun.dense facial landmark localization: database and annotation tool, 34rd youth academic annual conference of chinese association of automation (yac). ieee, 2019: 625-630.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>29.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jinchuan xiao, yinhang tang, jianzhuguo, yang yang, xiangyu zhu, zhen lei, stan z li.3dma: a multi-modality 3d mask face anti-spoofing database, 16th ieee international conference on advanced video and signal based surveillance (avss). 2019: 1-8.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>30.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yinglu liu, hao shen, yue si, xiaobo wang, xiangyu zhu, hailin shi, et al. grand challenge of 106-point facial landmark localization, in 2019 ieee international conference on multimedia and expo (icme) workshop. 2019.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>31.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>guanan wang, tianzhu zhang, jian cheng, si liu, yang yang, zengguang hou.&nbsp;rgb-infrared cross-modality person re-identification via joint pixel and feature alignment. iccv, pp. 4321-4330, october 2019, seoul, korea</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>32.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>fanrong li, zitao mo, peisong wang, zejian liu, jiayun zhang, gang li, qinghao hu, xiangyu he, cong leng, yang zhang, jian cheng.&nbsp;a system-level solution for low-power object detection. iccv 2019 workshop on low-power computer vision, october 2019, seoul, korea</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>33.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiangyu he, zitao mo, peisong wang, yang liu, mingyuan yang, jian cheng.&nbsp;ode-inspired network design for single image super-resolution.&nbsp;cvpr, pp. 1732-1741, june 2019, long beach, ca, usa.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>34.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>lei shi, yifan zhang, jian cheng, hanqing lu.&nbsp;skeleton-based action recognition with directed graph neural networks.&nbsp;cvpr, pp. 7912-7921 , june 2019, long beach, ca, usa</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>35.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>lei shi, yifan zhang, jian cheng, hanqing lu.&nbsp;two-stream adaptive graph convolutional networks for skeleton-based action recognition. cvpr, pp. 12026-12035 , june 2019, long beach, ca, usa</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>36.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jun fu,&nbsp;jing liu,&nbsp;haijie tian,&nbsp;yong li,&nbsp;yongjun bao,&nbsp;zhiwei fang,&nbsp;hanqing lu, dual attention network for scene segmentation.&nbsp;cvpr, pp. 3146-3154 , june 2019, long beach, ca, usa </span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>37.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiangyu he, peisong wang, jian cheng.&nbsp;k-nearest neighbors hashing. cvpr, pp. 2839-2848, june 2019, long beach, ca, usa</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>38.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jun fu,&nbsp;jing liu,&nbsp;yuhang wang,&nbsp;yong li,&nbsp;yongjun bao,&nbsp;jinhui tang,&nbsp;hanqing lu, adaptive context network for scene parsing.iccv, pp. 6748-6757, october 2019, seoul, korea</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>39.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>linyu zheng,&nbsp;ming tang,&nbsp;jinqiao wang,&nbsp;hanqing lu, learning features with differentiable closed-form solver for tracking, iccv, pp. 4020-4029, october 2019, seoul, korea</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>40.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>longteng guo,&nbsp;jing liu,&nbsp;peng yao,&nbsp;jiangwei li,&nbsp;hanqing lu, mscap: multi-style image captioning with unpaired stylized text.&nbsp;cvpr, pp. 4204-4213 , june 2019, long beach, ca, usa&nbsp;</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>41.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zhiwei liu,&nbsp;xiangyu zhu,&nbsp;guosheng hu,&nbsp;haiyun guo,&nbsp;ming tang,&nbsp;zhen lei,&nbsp;neil martin robertson,&nbsp;jinqiao wang, semantic&nbsp;alignment:&nbsp;finding&nbsp;semantically&nbsp;consistent&nbsp;ground-truth&nbsp;for&nbsp;facial&nbsp;landmark&nbsp;detection.&nbsp;cvpr, pp. 3467-3476 , june 2019, long beach, ca, usa&nbsp;</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>42.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xingan ma,&nbsp;kuan zhu,&nbsp;haiyun guo,&nbsp;jinqiao wang,&nbsp;min huang,&nbsp;qinghai miao, vehicle&nbsp;re-identification&nbsp;with&nbsp;refined&nbsp;part&nbsp;model.&nbsp;icme workshops, pp.603-606, july 2019, shanghai, china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>43.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yongcheng liu, bin fan, shiming xiang, chunhong pan: relation-shape convolutional neural network for point cloud analysis. cvpr 2019: 8895-8904, long beach, california, usa, june 16-20, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>44.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yongcheng liu, bin fan, gaofeng meng, jiwen lu, shiming xiang, chunhong pan. densepoint: learning densely contextual representation for efficient point cloud processing, ieee international conference on computer vision 2019, pp. 5239-5248, october 27-november 2, 2019, seoul, korea.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>45.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>nuo xu, chunlei huo, chunhong pan: adaptive brightness learning for active object recognition. ieee international conference on acoustics, speech and signal processing (icassp), 2019: 2162-2166, 12 - 17 may, 2019, brighton, uk.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>46.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>he huang, chunlei huo, feilong wei, chunhong pan: rotation and scale-invariant object detector for high resolution optical remote sensing images. ieee international geoscience and remote sensing symposium(igarss), 2019: 1386-1389, july 28 - august 2, 2019, yokohama, japan</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>47.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>qiaozhe li, xin zhao, ran he and kaiqi huang,  visual-semantic graph reasoning for pedestrian attribute recognition, proc. aaai conference on artificial intelligence, pp. 8634-8641, january 2019, hawaii, usa.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>48.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>weining wang, yan huang and liang wang,  language-driven temporal activity localization: a semantic matching reinforcement learning model, proc. ieee conference on computer vision and pattern recognition, pp. 334-343, june 2019, long beach, ca, usa.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>49.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>chunfeng song, yan huang, wanli ouyang and liang wang,  box-driven class-wise region masking and filling rate guided loss for weakly supervised semantic segmentation, proc. ieee conference on computer vision and pattern recognition, pp. 3136-3145, june 2019, long beach, ca, usa.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>50.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>chenyang si, wentao chen, wei wang, liang wang and tieniu tan,  an attention enhanced graph convolutional lstm network for skeleton-based action recognition, proc. ieee conference on computer vision and pattern recognition, pp. 1227-1236, june 2019, long beach, ca, usa.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>51.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xuecai hu, haoyuan mu, xiangyu zhang, zilei wang, tieniu tan and jian sun,  meta-sr: a magnification-arbitrary network for super-resolution, proc. ieee conference on computer vision and pattern recognition, pp. 1575-1584, june 2019, long beach, ca, usa.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>52.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jian liang, ran he, zhenan sun and tieniu tan,  distant supervised centroid shift: a simple and efficient approach to visual domain adaptation, proc. ieee conference on computer vision and pattern recognition, pp. 2975-2984, june 2019, long beach, ca, usa.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>53.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yan huang and liang wang, acmm: aligned cross-modal memory for few-shot image and sentence maching, proc. ieee international conference on computer vision, october 2019, seoul, korea.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>54.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>peipei li, xiang wu, yibo hu, ran he and zhenan sun,  m2fpa: a multi-yaw multi-pitch high-quality database and benchmark for facial pose analysis, proc. ieee international conference on computer vision, october 2019, seoul, korea.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>55.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>kai niu, yan huang and liang wang, &quot;fusing two directions in cross-domain adaption for real life person search by language, proc. ieee international conference on computer vision workshop, october 2019, seoul, korea.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>56.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>hongyuan yu, chengquan zhang, xuan li, junyu han, errui ding, liang wang,  an end-to-end video text detector with online tracking, proc. international conference on document analysis and recognition (icdar), september 2019, sydney, australia.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>57.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>lingxiao he, yinggang wang, wu liu, he zhao, zhenan sun, jiashi feng,  foreground-aware pyramid reconstruction for alignment-free occluded person re-identification, proc. ieee international conference on computer vision, pp. 8450-8459, october 2019, seoul, korea..</span></p> <p class=af0><span lang=en-us><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189722"></a><a name="_toc24098155"></a><a name="_toc532562241"></a><a name="_toc532391210"><span style='mso-bookmark:_toc532562241'><span style='mso-bookmark:_toc24098155'><span style='mso-bookmark:_toc40189722'><b><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>!j_ƌ r</span></b></span></span></span></a><a name="_toc24465904"></a><a name="_toc24361012"></a><a name="_toc532562411"><span style='mso-bookmark:_toc24361012'><span style='mso-bookmark:_toc24465904'><span style='mso-bookmark:_toc40189722'><b><span lang=en-us>pattern recognition</span></b></span></span></span></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>58.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>ting-bing xu, cheng-lin liu, data-distortion guided self-distillation for deep neural networks, proc. 33th aaai, honolulu, hawaii, usa, jan. 27-feb. 1, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>59.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiaobing wang, yingying jiang, zhenbo luo, cheng-lin liu, hyunsoo choi, sungjin kim, arbitrary shape scene text detection with adaptive text region representation, cvpr 2019, long beach, ca, june 16-20, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>60.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>hongwei pang, peipei yang, xiaolin chen, yong wang, cheng-lin liu, insect recognition under natural scenes using r-fcn with anchor boxes estimation, icig 2019, beijing, china, august 23-25, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>61.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiaolong yun, yan-ming zhang, jun-yu ye, cheng-lin liu, online handwritten diagram recognition with graph attention networks, icig 2019, beijing, china, august 23-25, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>62.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>nibal nayef, cheng-lin liu, jean-marc ogier, icdar2019 robust reading challenge on multi-lingual scene text detection and recognition  rrc-mlt-2019, proc. 15th icdar, sydney, australia, september 20-25, 2019, pp.1582-1587.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>63.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>cu vinh loc, jean-christophe burie, jean-marc ogier, cheng-lin liu, hiding security feature into text context for securing documents using generated font, proc. 15th icdar, sydney, australia, september 20-25, 2019, pp.1214-1219.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>64.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>cu vinh loc, jean-christophe burie, jean-marc ogier, cheng-lin liu, a robust data hiding scheme using generated content for securing genuine documents, proc. 15th icdar, sydney, australia, september 20-25, 2019, pp.787-792.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>65.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiang ao, xu-yao zhang, hong-ming yang, fei yin, cheng-lin liu, cross-modal prototype learning for zero-shot handwriting recognition, proc. 15th icdar, sydney, australia, september 20-25, 2019, pp.589-594.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>66.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiao-hui li, fei yin, tao xue, long liu, jean-marc ogier, cheng-lin liu, instance aware document image segmentation using label pyramid networks and deep watershed transformation, proc. 15th icdar, sydney, australia, september 20-25, 2019, pp.514-519.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>67.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yi-kang zhang, heng zhang, yong-ge liu, qing yang, cheng-lin liu, oracle character recognition by nearest neighbor classification with deep metric learning, proc. 15th icdar, sydney, australia, september 20-25, 2019, pp.309-314.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>68.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yue xu, fei yin, da-han wang, xu-yao zhang, zhaoxiang zhang, cheng-lin liu, casia-ahcdb: a large-scale chinese ancient handwritten characters database, proc. 15th icdar, sydney, australia, september 20-25, 2019, pp.793-798.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>69.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>miao zhao, rui-qi wang, fei yin, xu-yao zhang, lin-lin huang, jean-marc ogier, fast text/non-text image classification with knowledge distillation, proc. 15th icdar, sydney, australia, september 20-25, 2019, pp.1458-1463.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>70.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>wei feng, wenhao he, fei yin, xu-yao zhang, cheng-lin liu, textdragon: an end-to-end framework for arbitrary shaped text spotting, iccv 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>71.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>shi yan, wei feng, peng zhao, cheng-lin liu, progressive scale expansion network with octave convolution for arbitrary shape scene text detection, acpr 2019, aukland, new zealand.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>72.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jian-hui chen, zuo-ren wang, cheng-lin liu, accelerating bag-of-words with som, iconip 2019, australia.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>73.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>bingning wang,zhixing tian,kang liu,jun zhao,ting yao,qi zhang and jingfang xu. document gated reader for open domain question answering, international acm sigir conference on research and development in information retrieval</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>�</span><span lang=en-us>sigir 2019),pp. 85-94 ,2019, paris,france</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>74.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>shizhu he,kang liu and weiting an. learning to align question and answer utterances in customer service conversation with recurrent pointer networks, the thirty-third aaai conference on artificial intelligence (aaai 2019),pp 134-141,2019, hawaii,america</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>75.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jian liu, yubo chen and kang liu. exploiting the ground-truth: an adversarial imitation based knowledge distillation approach for event detection, the thirty-third aaai conference on artificial intelligence (aaai 2019),pp 6754-6761,2019, hawaii,america</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>76.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>cao liu, shizhu he, kang liu and jun zhao. vocabulary pyramid network: multi-pass encoding and decoding with multi-level vocabularies for response generation, proceedings of the 58th annual meeting of the association for computational linguistics(acl 2019),pp 3774-3783,2019, florence, italy</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>77.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiang zhang, shizhu he, kang liu and jun zhao. adansp: uncertainty-driven adaptive decoding in neural semantic parsing, proceedings of the 58th annual meeting of the association for computational linguistics(acl 2019),pp 4265 4270,2019, florence, italy</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>78.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>dianbo sui,yubo chen,kang liu,jun zhao and shengping liu. leverage lexical knowledge for chinese named entity recognition via collaborative graph network, proceedings of the 2019 conference on empirical methods in natural language processing(emnlp 2019),pp 3828-3838,2019, hongkong,china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>79.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jian liu, yubo chen, kang liu and jun zhao. neural cross-lingual event detection with minimal parallel resources, proceedings of the 2019 conference on empirical methods in natural language processing(emnlp 2019),pp 738-748,2019, hongkong,china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>80.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>cao liu, shizhu he, kang liu, zaiqing nie and jun zhao. generating questions for knowledge bases via incorporating diversified contexts and answer-aware loss, proceedings of the 2019 conference on empirical methods in natural language processing(emnlp 2019),pp 2431-2441,2019, hongkong,china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>81.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiangrong zeng, shizhu he, daojian zeng, kang liu and jun zhao. learning the extraction order of multiple relational facts in a sentence with reinforcement learning, proceedings of the 2019 conference on empirical methods in natural language processing(emnlp 2019),pp 367-377,2019, hongkong,china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>82.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>delai qiu, yuanzhe zhang, xinwei feng, xiangwen liao, wenbin jiang, yajuan lyu, kang liu and jun zhao. machine reading comprehension using structural knowledge graph-aware network, proceedings of the 2019 conference on empirical methods in natural language processing(emnlp 2019),pp 5895-5900,2019, hongkong,china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>83.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>cao liu, shizhu he, kang liu, zaiqing nie and jun zhao. incorporating interlocutor-aware context into response generation on multi-party chatbots, the signll conference on computational natural language learning(conll 2019 ),pp 718-727,2019, hongkong,china</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>84.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yang yang, zhen lei; jinqiao wang, stan z. li. in defense of color names for small-scale person re-identification, the 12th iapr international conference on biometrics, 2019, crete, greece.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>85.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yaping zhang, shuai nie, wenju liu, xing xu, dongxiang zhang, heng tao shen, sequence-to-sequence domain adaptation network for robust text image recognition, in the proceedings of cvpr2019(2019, june 16-20<span style='mso-spacerun:yes'>� </span>2019, long beach, ca, usa, 2740-2749.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>86.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yunze gao,&nbsp;yingying chen,&nbsp;jinqiao wang,&nbsp;hanqing lu, gate-based bidirectional interactive decoding network for scene text recognition.&nbsp;cikm, pp. 2273-2276, november 2019, beijing, china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>87.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zhiwei liu,&nbsp;ming tang,&nbsp;guosheng hu,&nbsp;jinqiao wang, learning&nbsp;discriminative&nbsp;and&nbsp;complementary&nbsp;patches&nbsp;for&nbsp;face recognition.&nbsp;fg, pp.&nbsp;1-7, may, 2019, lille, france</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>88.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yaping zhang, shuai nie, wenju liu, xing xu, dongxiang zhang, heng tao shen, sequence-to-sequence domain adaptation network for robust text image recognition, in the proceedings of cvpr2019(2019, june 16-20<span style='mso-spacerun:yes'>� </span>2019, long beach, ca, usa, 2740-2749.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>89.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiang wu, huaibo huang, vishal patel, ran he and zhenan sun,  disentangled variational representation for heterogeneous face recognition, proc. aaai conference on artificial intelligence, pp. 9005-9012, january 2019, hawaii, usa.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>90.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yan huang, yang long, and liang wang,  few-shot image and sentence matching via gated visual-semantic embedding, proc. aaai conference on artificial intelligence, pp. 8489-8496, january 2019, hawaii, usa.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>91.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>linsen song, jie cao, lingxiao song, yibo hu and ran he,  geometry-aware face completion and editing, proc. aaai conference on artificial intelligence, january 2019, hawaii, usa.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>92.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>caiyong wang, yong he, yunfan liu, zhaofeng he, ran he and zhenan sun,  sclerasegnet: an improved u-net model with attention for accurate sclera segmentation, proc. international conference on biometrics, june 2019, crete, greece.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>93.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>min ren, caiyong wang, yunlong wang, zhenan sun and tieniu tan,  alignment free and distortion robust iris recgnition, proc. international conference on biometrics, june 2019, crete, greece. </span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>94.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yunfan liu, qi li and zhenan sun,  attribute-aware face aging with wavelet-based generative adversarial networks, proc. ieee conference on computer vision and pattern recognition, pp. 11877-11886, june 2019, long beach, ca, usa.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>95.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jianze wei, yunlong wang, xiang wu, zhaofeng he, ran he, zhenan sun,  cross-sensor iris recognition using adversarial strategy and sensor-specific information, proc. ieee international conference on biometrics: theory, applications, and systems, september 2019, tampa, florida.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>96.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>tianxiang ma, bo peng, wei wang, jing dong, &quot;any-to-one face reenactment based on conditional generative adversarial network,&quot; proc. asia-pacific signal and information processing association annual summit and conference, pp. 1657-1664, november 2019, lanzhou, china.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>97.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zerui chen, yan huang, liang wang,  learning depth-aware heatmaps for 3d human pose estimation in the wild, proc. british machine vision conference (bmvc), september 2019, cardiff, wales, uk..</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>98.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>wu zheng, lin li, zhaoxiang zhang, yan huang, and liang wang,  relational network for skeleton-based action recognition, proc. ieee international conference on multimedia and expo (icme), july 2019, shanghai, china.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>99.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jun bai, yi zeng, yuxuan zhao and feifei zhao. training a v1 like layer using gabor filters in convolutional neural networks. proceedings of the 2019 international joint conference on neural networks (ijcnn 2019). budapest, hungary, july 14-19, 2019.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>100.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>dongcheng zhao, yi zeng. dynamic fusion of convolutional features based on spatial and temporal attention for visual tracking. proceedings of the 2019 international joint conference on neural networks (ijcnn 2019). budapest, hungary, july 14-19, 2019.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:0cm; mso-char-indent-count:0'><span lang=en-us><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189723"></a><a name="_toc24098156"></a><a name="_toc532562242"></a><a name="_toc532391211"><span style='mso-bookmark:_toc532562242'><span style='mso-bookmark:_toc24098156'><span style='mso-bookmark:_toc40189723'><b><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>�n�]zf��</span></b></span></span></span></a><a name="_toc24465905"></a><a name="_toc24361013"></a><a name="_toc532562412"><span style='mso-bookmark:_toc24361013'><span style='mso-bookmark:_toc24465905'><span style='mso-bookmark:_toc40189723'><b><span lang=en-us>artificial intelligence</span></b></span></span></span></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>101.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>huaiyu li, weiming dong, xing mei, chongyang ma, feiyue huang, bao-gang hu,  lgm-net: learning to generate matching networks for few shot learning, international conference on machine learning (icml), pp. 3825-3834, 2019, long beach, ca, usa.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>102.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zhe li, jian cheng.&nbsp;training binary-valued gates lstm. icdar 2019</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>103.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zhe li,&nbsp;peisong wang,&nbsp;hanqing lu,&nbsp;jian cheng, reading selectively via binary input gated recurrent unit.&nbsp;ijcai,&nbsp;pp. 5074-5080, august 2019, macao, china</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>104.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>guanan wang, yang yang, jian cheng, jinqiao wang, zengguang hou.&nbsp;color-sensitive persong re-identification. ijcai, pp. 933-939, august 2019, macao, china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>105.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>fei liu,&nbsp;jing liu,&nbsp;zhiwei fang,&nbsp;richang hong,&nbsp;hanqing lu, densely connected attention flow for visual question answering.&nbsp;ijcai, pp.&nbsp;869-875, august 2019, macao, china</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>106.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>shen fang, qi zhang, gaofeng meng, shiming xiang, chunhong pan: gstnet: global spatial-temporal network for traffic flow prediction. ijcai 2019: 2286-2293, august 10-16 2019, macao, china</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>107.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yukang chen, gaofeng meng, qian zhang, shiming xiang, chang huang, lisen mu, and xinggang wang: renas: reinforced evolutionary neural architecture search. cvpr 2019: 4787-4796, long beach, california, usa, june 16-20, 2019</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>108.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>jianlong chang, xinbang zhang, yiwen guo, gaofeng meng, shiming xiang, chunhong pan. data: differentiable architecture approximation, thirty-third conference on neural information processing systems, vancouver canada, dec 8-dec-12, 2019. pp.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>109.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yukang chen, tong yang, xiangyu zhang, gaofeng meng, xinyu xiao, jian sun. detnas: backbone search for object detection, vancouver canada, dec 8-dec-12, 2019. pp.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>110.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>fenyu hu, yanqiao zhu, shu wu, liang wang, tieniu tan,  hierarchical graph convolutional networks for semi-supervised node classification, proc. international joint conference on artificial intelligence (ijcai), pp. 4532-4539, august 2019, macao, china.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>111.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>qiaozhe li, xin zhao, ran he, kaiqi huang,  pedestrian attribute recognition by joint visual-semantic reasoning and knowledge distillation, proc. international joint conference on artificial intelligence (ijcai), pp. 833-839, august 2019, macao, china.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>112.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>weikuo guo, huaibo huang, xiangwei kong, ran he,  learning disentangled representation for cross-modal retrieval with deep mutual information estimation, proc. acm international conference on multimedia, october 2019, nice, france.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>113.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>chaoyou fu, liangchen song, xiang wu, guoli wang, ran he,  neurons merging layer: towards progressive redundancy reduction for deep supervised hashing, proc. international joint conference on artificial intelligence, august 2019, macao, china.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>114.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>junchi yu, jie cao, yi li, xiaofei jia, ran he,  pose-preserving cross spectral face hallucination, proc. international joint conference on artificial intelligence, august 2019, macao, china.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:0cm; mso-char-indent-count:0'><span lang=en-us><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189724"><b><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman";color:black;mso-themecolor:text1'>:ghvf[`n</span><span lang=en-us style='color:black;mso-themecolor:text1'>machine learning</span></b></a><b><span lang=en-us style='color:black;mso-themecolor:text1'><o:p></o:p></span></b></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>115.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zeyu cui, zekun li, shu wu, xiaoyu zhang, liang wang,  dressing as a whole: outfit compatibility learning based on node-wise graph neural networks, proc. the web conference, pp. 307-317, may 2019, san francisco, usa.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>116.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yi li, huaibo huang, junchi yu, ran he and tieniu tan,  cosmetic-aware makeup cleanser, proc. ieee international conference on biometrics: theory, applications, and systems, september 2019, tampa, florida, usa.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>117.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>chaoyou fu, xiang wu, yibo hu, huaibo huang and ran he,  dual variational generation for low shot heterogeneous face recognition, proc. conference on neural information processing systems (nips), december 2019, vancouver, canada.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>118.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>qiyue yin, qingming li, junge zhang, shu wu, &quot;multi-view clustering via adversarial view embedding and adaptive view fusion, proc. acm international conference on information and knowledge management (cikm), november 2019, beijing china.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:0cm; mso-char-indent-count:0'><span lang=en-us><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:3'><a name="ole_link2"></a><a name="_toc40189725"><span style='mso-bookmark:ole_link2'><b><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman";color:black;mso-themecolor:text1'>pencc�c</span><span lang=en-us style='color:black;mso-themecolor:text1'>data mining</span></b></span></a><span style='mso-bookmark:ole_link2'><b><span lang=en-us style='color:black; mso-themecolor:text1'><o:p></o:p></span></b></span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><span style='mso-bookmark:ole_link2'><a name="_hlk11231759"><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>119.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>shu wu, yuyuan tang, yanqiao zhu, liang wang, xing xie, tieniu tan,  session-based recommendation with graph neural network, proc. aaai conference on artificial intelligence, pp. 346-353, january 2019, hawaii, usa.</span></a></span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><span style='mso-bookmark:ole_link2'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>120.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>qiang cui, yuyuan tang, shu wu and liang wang, &quot;distance2pre: personalized spatial preference&nbsp;for next point-of-interest prediction, proc. pacific-asia conference on knowledge discovery and data mining (pakdd), pp. 289-301, april 2019, macau, china.</span></span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><span style='mso-bookmark:ole_link2'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>121.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zekun li, zeyu cui, shu wu, xiaoyu zhang, liang wang,  fi-gnn: modeling feature interactions via graph neural networks for ctr prediction, proc. acm international conference on information and knowledge management&nbsp;(cikm), november 2019, beijing, china.</span></span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><span style='mso-bookmark:ole_link2'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>122.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>jingyi wang, qiang liu, zhaocheng liu, shu wu,  towards accurate and interpretable sequential prediction: a cnn &amp; attention-based feature extractor, proc. acm international conference on information and knowledge management&nbsp;(cikm), november 2019, beijing china.</span></span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><span style='mso-bookmark:ole_link2'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>123.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zekun li, zeyu cui,&nbsp;shu wu, xiaoyu zhang, liang wang,  semi-supervised compatibility learning across categories for clothing matching, proc. ieee international conference on multimedia and expo (icme), july 2019, shanghai, china.</span></span></p> <p class=af0><s><span lang=en-us><o:p><span style='text-decoration:none'>&nbsp;</span></o:p></span></s></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189726"></a><a name="_toc24098157"></a><a name="_toc532562245"></a><a name="_toc532391214"><span style='mso-bookmark:_toc532562245'><span style='mso-bookmark:_toc24098157'><span style='mso-bookmark:_toc40189726'><b><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>���{:g�vb_f[</span></b></span></span></span></a><a name="_toc24465906"></a><a name="_toc24361014"></a><a name="_toc532562415"><span style='mso-bookmark:_toc24361014'><span style='mso-bookmark:_toc24465906'><span style='mso-bookmark:_toc40189726'><b><span lang=en-us>computer graphics</span></b></span></span></span></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>124.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yu song, fan tang, weiming dong, feiyue huang, changsheng xu,  balance-based photo posting, siggraph asia (posters), november 17-20, 2019, brisbane, qld, australia.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>125.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yiqun wang, jianwei guo, jun xiao, and dong-ming yan. 2019. a wavelet energy decomposition signature for robust non-rigid shape matching. acm siggraph asia 2019 posters.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>126.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zhengda, lu and guo, jianwei and xiao, jun and wang, ying and zhang, xiaopeng and yan, dong-ming. feature curve network extraction via quadric surface fitting, pacific graphics short papers, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>127.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>qiang yu, wei sui, ying wang, shiming xiang, chunhong pan. incremental poisson surface reconstruction for large scale three-dimensional modeling, in proceedings of the 2nd chinese conference on pattern recognition and computer vision, lncs 11859, pp. 442 453, 2019.</span></p> <p class=af0><span lang=en-us><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189727"></a><a name="_toc24098158"><span style='mso-bookmark:_toc40189727'><b><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>y�zso���{</span></b></span></a><a name="_toc24465907"></a><a name="_toc24361015"><span style='mso-bookmark:_toc24465907'><span style='mso-bookmark:_toc40189727'><b><span lang=en-us>multimedia computing</span></b></span></span></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>128.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>wenhua meng, shan zhang, xudong yao, xiaoshan yang, changsheng xu, and xiaowen huang: biomedia acm mm grand challenge 2019: using data enhancement to solve sample unbalance. acm international conference on multimedia (mm): pp. 2588-2592, nice, france, october 21-25, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>129.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yaoyu li, hantao yao, lingyu duan, hanxing yao, changsheng xu,  adaptive feature fusion via graph neural network for person re-identification . acm multimedia 2019: 2115-2123</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>130.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>shaobo min, hantao yao, hongtao xie, zheng-jun zha, yongdong zhang,  domain-specific embedding network for zero-shot recognition . acm multimedia 2019: 2070-2078</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>131.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>junyu gao, tianzhu zhang, changsheng xu: i know the relationships: zero-shot action recognition via two-stream graph convolutional networks and knowledge graphs. aaai 2019: 8303-8311</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>132.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>junyu gao, tianzhu zhang, changsheng xu: graph convolutional tracking. cvpr 2019: 4649-4659</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>133.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>xinhong ma, tianzhu zhang, changsheng xu: gcan: graph convolutional adversarial network for unsupervised domain adaptation. cvpr 2019: 8266-8276</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>134.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>xuan ma, bing-kun bao, lingling yao, changsheng xu: multimodal latent factor model with language constraint for predicate detection. icip 2019: 4454-4458</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>135.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>xiaowen huang, quan fang, shengsheng qian, jitao sang, yan li, changsheng xu: explainable interaction-driven user modeling over knowledge graph for sequential recommendation. acm multimedia 2019: 548-556</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>136.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yingying zhang, shengsheng qian, quan fang, changsheng xu: multi-modal knowledge-aware hierarchical attention network for explainable medical question answering. acm multimedia 2019: 1089-1097</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>137.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>jun hu, shengsheng qian, quan fang, changsheng xu: hierarchical graph semantic pooling network for multi-modal community question answer matching. acm multimedia 2019: 1157-1165</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>138.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>huaiwen zhang, quan fang, shengsheng qian, changsheng xu: multi-modal knowledge-aware event memory network for social media rumor detection. acm multimedia 2019: 1942-1951</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>139.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>longteng guo,&nbsp;jing liu,&nbsp;jinhui tang,&nbsp;jiangwei li,&nbsp;wei luo,&nbsp;hanqing lu, aligning linguistic words and visual semantic units for image captioning.&nbsp;acm multimedia, pp. 765-773, october 2019, nice, france</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>140.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yousong zhu,&nbsp;chaoyang zhao,&nbsp;chenxia han,&nbsp;jinqiao wang,&nbsp;hanqing lu, mask guided knowledge distillation for single shot detector.&nbsp;icme, pp. 1732-1737, july 2019, shanghai, china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>141.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>lu zhou,&nbsp;yingying chen,&nbsp;jinqiao wang,&nbsp;ming tang,&nbsp;hanqing lu, bi-directional message passing based scanet for human pose estimation.&nbsp;icme, pp. 1048-1053, july 2019, shanghai, china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>142.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>junbo wang, wei wang, zhiyong wang, liang wang, dagan feng and tieniu tan,  stacked memory network for video summarization, proc. acm multimedia conference, october 2019, nice, france.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>143.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>hongwen zhang, jie cao, guo lu, wanli ouyang and zhenan sun,  danet: decompose-and-aggregate network for 3d human shape and pose estimation proc. acm multimedia conference, october 2019, nice, france.</span></p> <p class=af0><span lang=en-us><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189728"></a><a name="_toc24098159"></a><a name="_toc532562246"></a><a name="_toc532391215"><span style='mso-bookmark:_toc532562246'><span style='mso-bookmark:_toc24098159'><span style='mso-bookmark:_toc40189728'><b><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>�va�</span><span lang=en-us>/</span></b></span></span></span></a><span style='mso-bookmark: _toc532391215'><span style='mso-bookmark:_toc532562246'><span style='mso-bookmark:_toc24098159'><span style='mso-bookmark:_toc40189728'><b><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>ɖ��ytnr�g</span></b></span></span></span></span><a name="_toc24465908"></a><a name="_toc24361016"></a><a name="_toc532562416"><span style='mso-bookmark:_toc24361016'><span style='mso-bookmark:_toc24465908'><span style='mso-bookmark:_toc40189728'><b><span lang=en-us>image/video processing and analysis</span></b></span></span></span></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>144.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>tingting xie, xiaoshan yang, tianzhu zhang, changsheng xu, ioannis patras: exploring feature representation and training strategies in temporal action localization. ieee international conference on image processing (icip), pp. 1605-1609, taipei, taiwan, september 22-25, 2019.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>145.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>changde du; changying du; huiguang he,  doubly semi-supervised multimodal adversarial learning for classification, generation and retrieval , ieee international conference on multimedia and expo (icme), pages. 13-18, 2019</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>146.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>haibao wang, lijie huang, changde du, huiguang he,  learning &quot;what&quot; and &quot;where&quot;: an interpretable neural encoding model, international joint conference on neural networks, ijcnn 2019 budapest, hungary, july 14-19, 2019, pp. 1-8,</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>147.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yile feng, xiaoqi chai, qinle ba, ge yang, quality assessment of synthetic fluorescence microscopy images for image segmentation, 2019 ieee international conference on image processing (icip), sep. 22-25, taipei, taiwan, china</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>148.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>lei shi,&nbsp;yifan zhang,&nbsp;jing hu,&nbsp;jian cheng,&nbsp;hanqing lu, gesture recognition using spatiotemporal deformable convolutional representation.&nbsp;icip, pp. 1900-1904, september 2019, taibei, taiwan, china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>149.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>haiyun guo,&nbsp;huiyao wu,&nbsp;chaoyang zhao,&nbsp;huichen zhang,&nbsp;jinqiao wang,&nbsp;hanqing lu, cascade attention network for person re-identification.&nbsp;icip, pp. 2264-2268, september 2019, taibei, taiwan, china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>150.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>fei liu,&nbsp;jing liu,&nbsp;zhiwei fang,&nbsp;hanqing lu, language and visual relations encoding for visual question answering.&nbsp;icip, pp. 3307-3311, september 2019, taibei, taiwan, china</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>151.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>jie gu, gaofeng meng, cheng da, shiming xiang, chunhong pan: no-reference image quality assessment with reinforcement recursive list-wise ranking. in proceedings of the 33th aaai conference on artificial intelligence (aaai) 2019: 8336-8343, hawaii, usa, january 27  february 1, 2019</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>152.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zhengkai jiang, peng gao, chaoxu guo, qian zhang, shiming xiang, chunhong pan: video object detection with locally-weighted deformable neighbors. in proceedings of the 33th aaai conference on artificial intelligence (aaai) 2019: 8529-8536, hawaii, usa, january 27  february 1, 2019</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>153.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>chaoxu guo, bin fan, jie gu, qian zhang, shiming xiang, veronique prinet, chunhong pan. progressive sparse local attention for video object detection, ieee international conference on computer vision, pp. 3909-3918, october 27-november 2, 2019, seoul, korea.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>154.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>da li, dangwei li, zhang zhang, liang wang and tieniu tan,  unsupervised cross-domain person re-identification: a new framework. proc. ieee international conference on image processing, september 2019, taiwan.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>155.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yi fan song, zhang zhang and liang wang,  richly activated graph convolutional network for action recognition with incomplete skeletons, proc. ieee international conference on image processing, september 2019, taiwan.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>156.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zerui chen, yan huang and liang wang,  augmented visual-semantic embeddings for image and sentence matching, proc. ieee international conference on image processing, september 2019, taiwan.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>157.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>linjiang huang, yan huang, wanli ouyang and liang wang, &quot;hierarchical graph convolutional network for skeleton-based action recognition, international conference on image and graphics (icig), august 2019, beijing, china.</span></p> <p class=af0><span lang=en-us><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189729"></a><a name="_toc24098160"></a><a name="_toc532562247"></a><a name="_toc532391216"><span style='mso-bookmark:_toc532562247'><span style='mso-bookmark:_toc24098160'><span style='mso-bookmark:_toc40189729'><b><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>;sf[�va�r�g</span></b></span></span></span></a><a name="_toc24465909"></a><a name="_toc24361017"></a><a name="_toc532562417"><span style='mso-bookmark:_toc24361017'><span style='mso-bookmark:_toc24465909'><span style='mso-bookmark:_toc40189729'><b><span lang=en-us>medical image analysis</span></b></span></span></span></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>158.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>bo wang, shuang qiu, huiguang he. dual encoding u-net for retinal vessel segmentation, medical image computing and computer assisted intervention - miccai 2019 - 22nd international conference, shenzhen, china, pp.: 84-92, october 13-17, 2019, proceedings, part i.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>159.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>shuang qiu, shengpei wang, weibo yi, chuncheng zhang, huiguang he:  the lasting effects of 1hz repetitive transcranial magnetic stimulation on resting state eeg in healthy subjects 41st annual international conference of the ieee engineering in medicine and biology society, embc 2019, berlin, germany, pp. 5918-5922, july 23-27, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>160.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yixin wang, shuang qiu, chen zhao, weijie yang, jinpeng li, xuelin ma, huiguang he, eeg-based emotion recognition with prototype-based data representation, 41st annual international conference of the ieee engineering in medicine and biology society, embc 2019, berlin, germany, pp.684-689 july 23-27, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>161.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yixin wang, shuang qiu, jinpeng li, xuelin ma, zhiyue liang, hui li, huiguang he, eeg-based emotion recognition with similarity learning network, 41st annual international conference of the ieee engineering in medicine and biology society, embc 2019, berlin, germany, pp. 1209-1212, july 23-27, 2019</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l8 level1 lfo8;tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>162.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yuanxing zhao, yanming zhang, ming song, cheng-lin liu, multi-view semi-supervised 3d whole brain segmentation with a self-ensemble network, miccai, shenzhen, china, 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>163.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>chen x, shen l, xie q.w, han h. skeleton-based image registration of serial electron microscopy sections, medical imaging 2019: digital pathology. international society for optics and photonics, 2019, vol.10956, pp.1095605.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>164.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>jiang y, xiao c, li l, chen x, shen l.j and han h. an effective encoder-decoder network for neural cell bodies and cell nucleus segmentation of em images. 2019 41st annual international conference of the ieee engineering in medicine and biology society (embc). ieee, pp. 6302-6305.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>165.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>luo j, hong b, jiang y, li l.l, xie q.w and han h. automatic classification for the type of multiple synapse based on deep learning. 2019 41st annual international conference of the ieee engineering in medicine and biology society (embc). ieee, pp. 40-43.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>166.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>dou x, yao h, feng f, wang p, zhou b, jin d, yang z, li j, zhao c, wang l, an n, liu b, zhang x, liu y. characterizing white matter connectivity in alzheimer s disease and mild cognitive impairment: automated fiber quantification.<span style='mso-spacerun:yes'>� </span>2019 ieee 16th international symposium on biomedical imaging (isbi 2019); 2019 april 8-11, 2019; 2019. p. 117-21.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>167.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>hu g, cui b, yu s. skeleton-based action recognition with synchronous local and non-local spatio-temporal learning and frequency attention; 2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>168.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>jin d, xu j, zhao k, hu f, yang z, liu b, jiang t, liu y. attention-based 3d convolutional network for alzheimer s disease diagnosis and biomarkers exploration.<span style='mso-spacerun:yes'>� </span>2019 ieee 16th international symposium on biomedical imaging (isbi 2019); 2019 april 8-11, 2019; 2019. p. 1047-51.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>169.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yao d, liu m, wang m, lian c, wei j, sun l, sui j, shen d. triplet graph convolutional network for multi-scale analysis of functional connectivity using functional mri.<span style='mso-spacerun:yes'>� </span>graph learning in medical imaging; 2019. p. 70-8.</span></p> <p class=af0><span lang=en-us><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:3'><a name="_toc40189730"></a><a name="_toc24098161"></a><a name="_toc532562248"></a><a name="_toc532391217"><span style='mso-bookmark:_toc532562248'><span style='mso-bookmark:_toc24098161'><span style='mso-bookmark:_toc40189730'><b><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>�����b/g</span></b></span></span></span></a><a name="_toc24465910"></a><a name="_toc24361018"></a><a name="_toc532562418"><span style='mso-bookmark:_toc24361018'><span style='mso-bookmark:_toc24465910'><span style='mso-bookmark:_toc40189730'><b><span lang=en-us>speech and language technology</span></b></span></span></span></a><b><span lang=en-us><o:p></o:p></span></b></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>170.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yang zhao, jiajun zhang, chengqing zong, zhongjun he, and hua wu. addressing the under-translation problem from the entropy perspective. in proceedings of the thirty-third aaai conference on artificial intelligence (aaai), honolulu, hawaii, usa, january 27-february 1, 2019, pp.451-458</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>171.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>junjie li, haoran li and chengqing zong. 2019. towards personalized review summarization via user-aware sequence network. in proceedings of the 33rd aaai conference on artificial intelligence (aaai), honolulu, hawaii, usa, january 27th  february 1st, 2019,vol. 33,<span style='mso-spacerun:yes'>� </span>pp. 6690-6697</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>172.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>jingyuan sun, shaonan wang, jiajun zhang and chengqing zong. towards sentence-level brain decoding with distributed representations. in proceedings of the 33rd aaai conference on artificial intelligence (aaai), honolulu, hawaii, usa, january 27th  february 1st, 2019,vol. 33,<span style='mso-spacerun:yes'>� </span>pp. 7047-7054</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>173.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>long zhou, jiajun zhang, chengqing zong, and heng yu. sequence generation: from both sides to the middle. in proceedings of the 28th international joint conference on artificial intelligence (ijcai), macao, china, august 10-16, 2019, pp.5471-5477</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>174.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>weikang wang, jiajun zhang, qian li, mei-yuh hwang, chengqing zong and zhifei li. incremental learning from scratch for task-oriented dialogue systems. in proceedings of the 57th annual meeting of the association for computational linguistics (acl), florence, italy, july 28-august 2, 2019, pp.3710-3720</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>175.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yining wang, long zhou, jiajun zhang, feifei zhai, jingfang xu and chengqing zong. a compact and language-sensitive multilingual translation method. in proceedings of the 57th annual meeting of the association for computational linguistics (acl), florence, italy, july 28th-august 2nd, 2019, pp.1213-1223</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>176.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>he bai, yu zhou, jiajun zhang and chengqing zong. memory consolidation for contextual spoken language understanding with dialogue logistic inference. in proceedings of the 57th annual meeting of the association for computational linguistics (acl), florence, italy, july 28 - august 2, 2019, pp.5448-5453</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>177.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>junjie li, xuepeng wang, dawei yin and chengqing zong. attribute-aware sequence network for review summarization. in proceedings of 2019 conference on empirical methods in natural language processing and 9th international joint conference on natural language processing (emnlp- ijcnlp), november 3 7, hong kong, china, 2019, pp.2991-3001</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>178.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>weikang wang, jiajun zhang, qian li, chengqing zong and zhifei li. are you for real? detecting identity fraud via dialogue interactions. in proceedings of 2019 conference on empirical methods in natural language. processing and 9th international joint conference on natural language processing (emnlp- ijcnlp), november 3 7, hong kong, china, 2019, pp.1762-1771</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>179.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yining wang, jiajun zhang, long zhou, yuchen liu and chengqing zong. synchronously generating two languages with interactive decoding. in proceedings of 2019 conference on empirical methods in natural language processing and 9th international joint conference on natural language processing (emnlp- ijcnlp), november 3 7, hong kong, china, 2019, pp.3341-3346</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>180.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>junnan zhu, qian wang, yining wang, yu zhou, jiajun zhang, shaonan wang, and chengqing zong. ncls: neural cross-lingual summarization. in proceedings of 2019 conference on empirical methods in natural language processing and 9th international joint conference on natural language processing (emnlp- ijcnlp), november 3 7, hong kong, china, 2019, pp.3045-3055</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>181.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yuchen liu, hao xiong, jiajun zhang, zhongjun he, hua wu, haifeng wang and chengqing zong. end-to-end speech translation with knowledge distillation. in proceedings of the 20th annual conference of the international speech communication association (interspeech), graz, austria, september 15-19, 2019, pp.1128-1132</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>182.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>kexin wang, yu zhou, shaonan wang, jiajun zhang and chengqing zong. understanding memory modules on learning simple algorithms. in t. miller, r. weber, d. maggazeni (eds.) ijcai 2019 explainable ai workshop. https://sites.google.com/view/xai2019/home</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>183.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zheng lian, jianhua tao, bin liu, jian huang,  conversational emotion analysis via attention mechanisms, 20th annual conference of the speech communication associatio (interspeech 2019), pp. 1936-1940, sept.15-19,2019, graz, austria</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>184.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zheng lian, jianhua tao, bin liu, jian huang, unsupervised representation learning with future observation prediction for speech emotion recognition 20th annual conference of the speech communication associatio (interspeech 2019)</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> �</span><span lang=en-us>pp. 3840-3844, sept.15-19,2019, graz, austria</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>185.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>zhengkun tian, jiangyan yi, jianhua tao, ye bai, zhengqi wen self-attention transducers for end-to-end speech recognition 20th annual conference of the speech communication associatio(interspeech 2019)</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>pp. 4395-4399, sept.15-19,2019, graz, austria</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>186.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>ye bai, jiangyan yi, jianhua tao, zhengkun tian, zhengqi wen learn spelling from teachers: transferring knowledge from language models to sequence-to-sequence speech recognition 20th annual conference of the speech communication associatio(interspeech 2019)</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>pp. 3795-3799, sept.15-19,2019, graz, austria</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>187.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>ye bai, jiangyan yi, jianhua tao, zhengqi wen, zhengkun tian, chenghao zhao, cunhang fan a time delay neural network with shared weight self-attention for small-footprint keyword spotting 20th annual conference of the speech communication associatio(interspeech 2019)</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>pp. 2190-2194, sept.15-19,2019, graz, austria</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>188.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>cunhang fan,bin liu, jianhua tao, jiangyan yi, zhengqi wen</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us> discriminative learning for monaural speech separation using deep embedding features 20th annual conference of the speech communication associatio (interspeech 2019), pp.4599-4603, sept.15-19,2019, graz, austria</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>189.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>mingyue niu,jianhua tao,bin liu,cunhang fan</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us> automatic depression level detection<span style='mso-spacerun:yes'>� </span>via lp-norm pooling 20th annual conference of the speech communication associatio (interspeech 2019), pp.4559-4563, sept.15-19,2019, graz, austria</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>190.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>ruibo fu , jianhua tao, zhengqi wen, yibin zheng, phoneme dependent speaker embedding and model factorization for multi-speaker speech synthesis and adaptation international conference on acoustics, speech and signal processing </span><span lang=en-us style='mso-bidi-font-family:"times new roman"'>(</span><span lang=en-us>icassp)</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>pp:6930-6934,may.12-17,2019,brighton, uk</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>191.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>jiangyan yi, jianhua tao, ye bai</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us> language-invariant bottleneck features from adversarial end-to-end acoustic models for low resource speech recognition international conference on acoustics, speech and signal processing (icassp), pp:6071-6075,may.12-17,2019,brighton, uk</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>192.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>jiangyan yi, jianhua tao self-attention based model for punctuation prediction using word and speech embeddings international conference on acoustics, speech and signal processing (icassp), pp:7270-7274, may.12-17, 2019, brighton, uk</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>193.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>mingyue niu,ya li,jianhua tao,jianhuang,zheng lian discriminative video recognition with temporal order for microexpression recognition international conference on acoustics, speech and signal processing (icassp), pp:2112-2116,may.12-17,2019,brighton, uk</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>194.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>bocheng zhao,minghao yang,jianhua tao drawing order recovery for handwriting chinese characters international conference on acoustics, speech and signal processing (icassp), pp:3227-3231,may.12-17,2019,brighton, uk</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>195.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>jian huang, jianhua tao, bin liu, zhen lian, mingyue niu</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us> efficient modeling of long temporal contexts for continuous emotion recognition 8th international conference on affective computing &amp; intelligent interaction (acii 2019), sept.3-6, 2019</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> �</span><span lang=en-us>cambridge, united kingdom</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>196.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>cunhang fan,bin liu, jianhua tao, jiangyan yi, zhengqi wen, ye bai</span><span style='font-family:�[so; mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us> noise prior knowledge learning for speech enhancement via gated convolutional generative adversarial network asia-pacific signal and information processing association annual summit and conference 2019</span><span style='font-family: �[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>november 18-21, 2019</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>lanzhou, china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>197.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>jiangyan yi, jianhua tao</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> �</span><span lang=en-us> distilling knowledge for distant speech recognition via parallel data asia-pacific signal and information processing association annual summit and conference 2019</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> �</span><span lang=en-us>november 18-21, 2019</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> �</span><span lang=en-us>lanzhou, china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>198.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>jiangyan yi, jianhua tao,  batch normalization based unsupervised speaker adaptation for acoustic models asia-pacific signal and information processing association annual summit and conference 2019</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>november 18-21, 2019</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>lanzhou, china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>199.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>haoxin ma, ye bai, jiangyan yi, jianhua tao,  hypersphere embedding and additive margin for query-by-example keyword spotting asia-pacific signal and information processing association annual summit and conference 2019</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> �</span><span lang=en-us>november 18-21, 2019</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> �</span><span lang=en-us>lanzhou, china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>200.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>ye bai, jiangyan yi, jianhua tao, zhengqi wen, bin liu 'voice activity detection based on time-delay neural networks asia-pacific signal and information processing association annual summit and conference 2019</span><span style='font-family:�[so; mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>november 18-21, 2019</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>lanzhou, china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>201.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>qiuxian zhang,jiangyan yi,jianhua tao,mingliang gu,yong ma,  focal loss for end-to-end short utterances chinese dialect identification , asia-pacific signal and information processing association annual summit and conference 2019</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> �</span><span lang=en-us>november 18-21, 2019</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> �</span><span lang=en-us>lanzhou, china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>202.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>yibin zheng,xi wang,lei he,shifeng pan,frank k. soong,zhengqi wen,jianhua tao,  forward-backward decoding for regularizing end-to-end tts , 20th annual conference of the international speech communication association, pp:1283-1287,sept.18-22,2019, graz, austria</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>203.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>bin liu, shuai nie, yaping zhang, shan liang, zhanlei yang, wenju liu,  focal loss and double-edge-triggered detector for robust small-footprint keyword spotting, in the proceedings of icassp 2019 (2019 ieee international conference on acoustics, speech, and signal processing), may 12-17, 2019, brighton, uk, 6361-6365.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>204.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>guanjun li, shan liang, shuai nie,wenju liu,  adaptive dereverberation using multi-channel linear prediction with deficient length filter, in the proceedings of icassp 2019 (2019 ieee international conference on acoustics, speech, and signal processing), may 12-17, 2019, brighton, uk, 556-560.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>205.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>bin liu, shuai nie,yaping zhang, shan liang, wenju liu,meng yu, lianwu chen, shouye peng, changliang li, jointly adversarial enhancement training for robust end-to-end speech recognition, in the proceedings of interspeech2019 </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>�</span><span lang=en-us>the 20th annual conference of the international speech communication association</span><span style='font-family: �[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>, september 15-19, graz, astria 2019, 491-495.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>206.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>guanjun li, shan liang, shuai nie,wenju liu, meng yu, lianwu chen, shouye peng, changliang li, jointly adversarial enhancement training for robust end-to-end speech recognition, in the proceedings of interspeech2019 </span><span style='font-family:�[so; mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span lang=en-us>the 20th annual conference of the international speech communication association</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>, september 15-19, graz, astria 2019, 2713-2717..</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>207.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>bin liu, shuai nie, wenju liu, hui zhang, xiangang li, and changliang li, deep segment attentive embedding for duration robust speaker verification, in the proceedings of apsipa annual summit and conference 2019 </span><span style='font-family: �[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span lang=en-us>2019 asia-pacific signal and information processing association annual summit and conference</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>, 18-21 november 2019, lanzhou, china, 822-826</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>208.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>xinyu xiao, lingfeng wang, shiming xiang, and chunhong pan: what and where the themes dominate in image. in proceedings of the 33th aaai conference on artificial intelligence (aaai) 2019: 9021-9029, hawaii, usa, january 27  february 1, 2019</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l8 level1 lfo8; tab-stops:list 21.0pt'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>209.<span style='font:7.0pt "times new roman"'>&nbsp; </span></span></span><![endif]><span lang=en-us>xinyu xiao, lingfeng wang, bin fan, shiming xiang, and chunhong pan. guiding the flowing of semantics: interpretable video captioning via pos tag, proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing, pages 2068 2077, hong kong, china, november 3 7, 2019.</span></p> <p class=af0><span lang=en-us><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:2'><a name="_toc40189731"></a><a name="_toc24098162"></a><a name="_toc532562249"></a><a name="_toc532391218"><span style='mso-bookmark:_toc532562249'><span style='mso-bookmark:_toc24098162'><span style='mso-bookmark:_toc40189731'><b style='mso-bidi-font-weight:normal'><span style='font-size:12.0pt;mso-bidi-font-size:11.0pt;line-height:110%; font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>�v�qo��</span></b></span></span></span></a><a name="_toc24465911"></a><a name="_toc24361019"></a><a name="_toc532562419"></a><span style='mso-bookmark:_toc532562419'><span style='mso-bookmark:_toc24361019'><span style='mso-bookmark:_toc24465911'><span style='mso-bookmark:_toc40189731'><b style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt; mso-bidi-font-size:11.0pt;line-height:110%'>national conference</span></b></span></span></span></span><span style='mso-bookmark:_toc24465911'><span style='mso-bookmark:_toc40189731'><b style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt; mso-bidi-font-size:11.0pt;line-height:110%'>s</span></b></span></span><b style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt; mso-bidi-font-size:11.0pt;line-height:110%'><o:p></o:p></span></b></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>guirong bai, shizhu he, kang liu and jun zhao. variational attention for commonsense knowledge aware conversation generation, the 8th ccf international conference on natural language processing and chinese computing (nlpcc 2019) , pp3-15, 10.12-10.14, dunhuang, china<span style='mso-tab-count:1'>�� </span></span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>2.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>bo zhou, yubo chen, kang liu and jun zhao. relation and fact type supervised knowledge graph embedding via weighted scores, the eighteenth china national conference on computational linguistics (ccl 2019), pp258-267, 10.18-10.20, kunming china<span style='mso-tab-count:1'>���� </span></span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>3.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>delai qiu, liang bao, zhixing tian, yuanzhe zhang, kang liu, jun zhao and xiangwen liao. delai qiu, liang bao, zhixing tian, yuanzhe zhang, kang liu, jun zhao and xiangwen liao, the eighteenth china national conference on computational linguistics (ccl 2019), pp93-104, 10.18-10.20, kunming china<span style='mso-tab-count:1'>� </span></span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>4.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>guirong bai, shizhu he, kang liu and jun zhao. utterance alignment in custom service by integer programming, the eighteenth china national conference on computational linguistics (ccl 2019), pp703-714, 10.18-10.20, kunming china</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>5.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>�n�s � _'yo �v��^ns �c�vt � b�tq�~l�:nr�g�v�so(u7b;u�p�g�^n�^(u ,{as�nj\hq�v�n:g�����f[/go���</span><span lang=en-us>ncmmsc2019</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> � �</span><span lang=en-us>pp</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>�</span><span lang=en-us>644-650,2019.08.15-17</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> �r�wm ���[</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>6.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>�pwzs �v��^ns �)nck�h</span> <span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'> �f_l�q</span> <span style='font-family: �[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'> ��s׋f</span> <span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'> �:_%f� �</span><span lang=en-us> </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>y���penc�^ꁨros�e�lxvz</span><span lang=en-us> </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>,{as�nj\hq�v�n:g�����f[/go���</span><span lang=en-us>ncmmsc2019</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> �</span><span lang=en-us>pp:256-268,2019.08.14-17</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> �r�wm ���[</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>7.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>:_%f� ��s׋f �f_l�q ��pwzs �)nck�h �ѐz��e � _^ �v��^ns � ��t���_�oo`�v-n�e�z0r�z��tb�|�~ </span> <span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>,{as�nj\hq�v�n:g�����f[/go���</span><span lang=en-us>ncmmsc2019</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>pp:521-526,2019.08.14-16</span><span style='font-family:�[so; mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'> �r�wm ���[</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l7 level1 lfo10'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>8.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yaping zhang, shuai nie, shan liang, and wenju liu,  bidirectional adversarial domain adaptation with semantic consistency, in the proceedings of prcv2019 (2019 chinese conference on pattern recognition and computer vision), november 8-11, 2019, xian, china, 184-198.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l7 level1 lfo10'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>9.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yaping zhang, shuai nie, shan liang, and wenju liu,  bidirectional adversarial domain adaptation with semantic consistency, in the proceedings of prcv2019 (2019 chinese conference on pattern recognition and computer vision), november 8-11, 2019, xian, china, 184-198.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>10.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>m. bian, b. peng, w. wang and j. dong,  an accurate lstm based video heart rate estimation method, proc. chinese conference on pattern recognition and computer vision (prcv), pp. 409 417, november 2019, xi an china.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l7 level1 lfo10'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>11.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>hongyuan yu, yan huang, lihong pi, liang wang, &quot;recurrent deconvolutional generative adversarial networks with application to video generation, proc. chinese conference on pattern recognition and computer vision (prcv) , november 2019, xi an china.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l7 level1 lfo10'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>12.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>x. xuan, b. peng, w. wang and j. dong,  on the generalization of gan image forensics, proc. chinese conference on biometric recognition, pp. 134 141, october 2019, hunan, china.</span></p> <p class=af0><span lang=en-us><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:2'><a name="_toc40189732"></a><a name="_toc24098163"></a><a name="_toc532562250"></a><a name="_toc532391219"><span style='mso-bookmark:_toc532562250'><span style='mso-bookmark:_toc24098163'><span style='mso-bookmark:_toc40189732'><b style='mso-bidi-font-weight:normal'><span style='font-size:12.0pt;mso-bidi-font-size:11.0pt;line-height:110%; font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>_>e�����[�^�sh����e</span></b></span></span></span></a><b style='mso-bidi-font-weight:normal'><span lang=en-us style='font-size:12.0pt; mso-bidi-font-size:11.0pt;line-height:110%'><o:p></o:p></span></b></p> <p class=af0><span lang=en-us><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:2'><a name="_toc40189733"></a><a name="_toc24098164"></a><a name="_toc532562251"></a><a name="_toc532391220"><span style='mso-bookmark:_toc532562251'><span style='mso-bookmark:_toc24098164'><span style='mso-bookmark:_toc40189733'><b style='mso-bidi-font-weight:normal'><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>�ve� rir</span></b></span></span></span></a><b style='mso-bidi-font-weight:normal'><span lang=en-us><o:p></o:p></span></b></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><a name="ole_link51"><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>wenqi ren, jinshan pan, hua zhang, xiaochun cao, and ming-hsuan yang, single image dehazing via multi-scale convolutional neural networks with holistic edges, international journal of computer vision, 2019</span></a></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>2.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>wenqi ren, jingang zhang, xiangyu xu, lin ma, xiaochun cao, gaofeng meng, and wei liu, deep video dehazing with semantic segmentation, ieee transactions on image processing, vol. 28, no. 4, pp. 1895 1908, 2019</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>3.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>boyi li, wenqi ren, dengpan fu, dacheng tao, dan feng, wenjun zeng, and zhangyang wang, benchmarking single image dehazing and beyond, ieee transactions on image processing, vol. 28, no. 1, pp. 492-505, 2019</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>4.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>qingbo wu, wenqi ren, and xiaochun cao, learning interleaved cascade of shrinkage fields for joint image dehazing and denoising, ieee transactions on image processing, vol. 29, pp. 1788-1801, 2019</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>5.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiao-diao chen, junyi ma, yixin li. approximating trigonometric functions by using exponential inequalities. journal of inequalities and applications, 2019:53. </span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>6.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>pin wang, yao cao, meifang yin, yongming li, shanshan lv, lixian huang, dayong zhang, yongquan luo, and jun wu. full-field burn depth detection based on near-infrared hyperspectral imaging and ensemble regression. review of scientific instrument, 2019,90, 064103 (2019); doi: 10.1063/1.5034503 </span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>7.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yuchuan liu, xiaoheng tan*, yongming li*, pin wang. weighted local discriminant preservation projection ensemble algorithm with embedded micro-noise</span></span><span style='mso-bookmark:ole_link51'><span lang=en-us style='mso-bidi-font-family: "times new roman"'>, ieee access, </span><span lang=en-us>2019,7: 143814 - 143828,30 september 2019 (sci/ei</span></span><span style='mso-bookmark:ole_link51'><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>�</span><span lang=en-us>20194307573127) </span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>8.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>pin wang, lirui wang, yongming li, qi song, shanshan lv, xianling hu. automatic cell nuclei segmentation and classification of cervical pap smear images. biomedical signal processing &amp; control, 48 (2019) 93 103 (sci/ei)</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>9.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>j. yang, y. sun, j. liang, b. ren, s.-h. lai, image captioning by incorporating affective concepts learned from both visual and textual components, neurocomputing, 328: 56-68, 2019</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>10.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>j. yang, j. liang, k. wang, p. l. rosin, m.-h. yang, subspace clustering via good neighbors, tpami, 2019</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>11.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>j. liang, j. yang, m.-m. cheng, p. l. rosin, l. wang, simultaneous subspace clustering and cluster number estimating based on triplet relationship, tip, 28(8): 3973-3985, 2019</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>12.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>j. yang, x. wu, j. liang, x. sun, m.-m. cheng, p. l. rosin, l. wang, self-paced balance learning for clinical skin disease recognition, tnnls, 2019</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>13.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>pengbo bo, yujian zheng, xiaohong jia, caiming zhang: multi-strip smooth developable surfaces from sparse design curves. computer-aided design 114: 1-12 (2019)</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>14.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>pengbo bo, michael barton: on initialization of milling paths for 5-axis flank cnc machining of free-form surfaces with general milling tools. computer aided geometric design 71: 30-42 (2019)</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>15.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>lu bai, luca rossi, </span></span><span style='mso-bookmark:ole_link51'><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>]=n#k����\o� � �</span><span lang=en-us> jian cheng, edwin r.hancocka quantum-inspired similarity measure for the analysis of complete weighted graphs</span></span><span style='mso-bookmark:ole_link51'><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>ieee transactions on cybernetics, doi: 10.1109/tcyb.2019.2913038 </span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>16.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>]=n#k</span><span lang=en-us>(</span></span><span style='mso-bookmark:ole_link51'><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>,{n\o�</span><span lang=en-us>), lu bai, zhihong zhang, edwin r. hancock.identifying the most informative features using a structurally interacting elastic net, neurocomputing, 2019</span></span><span style='mso-bookmark:ole_link51'><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>336,13-26.<span style='mso-spacerun:yes'>� </span></span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>17.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>lu bai, </span></span><span style='mso-bookmark:ole_link51'><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>]=n#k</span><span lang=en-us>(</span></span><span style='mso-bookmark:ole_link51'><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>qq t,{n\o�</span><span lang=en-us>), xiao bai, edwin r.hancock. deep depth-based representations of graphs through deep learning networks, neurocomputing,2019</span></span><span style='mso-bookmark:ole_link51'><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> �</span><span lang=en-us>336,3-12.</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>18.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiao-yu zhang, haichao shi, xiaobin zhu, peng li: active semi-supervised learning based on self-expressive correlation with generative adversarial networks. neurocomputing (neucom), 345, 103-113, 2019.</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>19.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiaobin zhu, xinming zhang, xiao-yu zhang*, ziyu xue, lei wang: a novel framework for semantic segmentation with generative adversarial network. journal of visual communication and image representation (jvci), 58, 532-543, 2019.</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>20.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>z. zhao, z. bao, z. zhang, j. deng, n. cummins, h. wang, j. tao, and b. schuller,  automatic assessment of depression rom speech via a hierarchical attention transfer network and attention autoencoders, ieee journal of selected topics in signal processing, special issue on automatic assessment of health disorders based on voice, speech and language processing, vol. 13, 2019. 11 pages, to appear (if: 6.688 (2018))</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>21.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>3. z. zhao, z. bao, y. zhao, z. zhang, n. cummins, z. ren, and b. schuller,  exploring deep spectrum representations via attention-based recurrent and convolutional neural networks for speech emotion recognition, ieee access, vol. 7, pp. 97515 97525, july 2019. (if: 4.098 (2018))</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>22.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>wenjie ying, jitao sang, jian yu. locality-constrained discrete graph hashing. neurocomputing 2019.</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>23.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yuhao wang, binxiu liang, meng ding and jiangyun li, dual-branch dense residual network for hyperspectral imagery classification, international journal of remote sensing, pp.1-22, 2019.</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>24.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jiangyun li, yikai zhao, jun fu, jiajia wu, jing liu, attention-guided network for semantic video segmentation, ieee access, vol.7, pp.140680-140689, 2019.</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>25.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jiangyun li, peng yao, weicun zhang, boosted transformer for image captioning, applied sciences, vol.9, no.16, pp.3260, 2019.</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>26.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiaopeng liu, yan liu, meng zhang, xianzhong chen, jiangyun li, improving stockline detection of radar sensor array systems in blast furnaces using a novel encoder decoder architecture, sensors, vol.19, no.16, pp.3470, 2019.</span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>27.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zhibin pan, erdun gao, ruoxin zhu, and lingfei wang,  a low bit-rate soc-based reversible data hiding algorithm by using new encoding strategies, multimedia tools and applications, 2019. (online) </span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>28.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zhibin pan, xinyi gao, lingfei wang, and erdun gao, effective reversible data hiding using dynamic neighboring pixels prediction based on prediction-error histogram, multimedia tools and applications, 2019. (accepted) </span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>29.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zhibin pan, xiuquan wu, and zhengyi li, central pixel selection strategy based on local grey-value distribution by using gradient information to enhance lbp for texture classification, expert systems with applications, vol. 120, pp. 319-334, apr. 2019. (online) </span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>30.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>rui li, zhibin pan, yang wang.  the linear prediction vector quantization for hyperspectral image compression, multimedia tools and applications, 2019. (online) </span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>31.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zhibin pan, rui zhang, weiping ku, yidi wang,  adaptive pattern selection strategy for diamond search algorithm in fast motion estimation, multimedia tools and applications, 2019. (online) </span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>32.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>erdun gao, zhibin pan, and xinyi gao, reversible data hiding based on novel pairwise pvo and annular merging strategy, information sciences, 2019. (online) </span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>33.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yang wang, zhibin pan, rui li,  a novel low bit rate side match vector quantization algorithm based on structed state codebook, multimedia tools and applications, 2019. (online) </span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>34.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yang wang, zhibin pan, rui li,  a new cell-level search based non-exhaustive approximate nearest neighbor (ann) search algorithm in the framework of product quantization, ieee access, 2019. (online) </span></span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l1 level1 lfo12'><span style='mso-bookmark: ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family: "times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>35.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yiwei pan, zhibin pan, yikun wang, wei wang,  a new fast search algorithm for exact k-nearest neighbors based on optimal triangle-inequality-based check strategy, knowledge-based systems, 2019. (online) </span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>36.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>shiming ge, zhao luo, chunhui zhang, yingying hua, dacheng tao. distilling channels for efficient deep tracking: ieee transactions on image processing, 2019. (early access)</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>37.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jia li, kui fu, shengwei zhao, shiming ge. spatiotemporal knowledge distillation for efficient estimation of aerial video saliency: ieee transactions on image processing, vol.29, no.1, pp. 1902  1914, 2020.</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>38.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>ziyi chen, chengyang ji, qin shen, wei liu, f xiao-feng qin, aiping wu, tissue-specific deconvolution of immune cell composition by integrating bulk and single-cell transcriptomes, bioinformatics, btz672, https://doi.org/10.1093/bioinformatics/btz672</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>39.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiang-jun shen, si-xing liu, bing-kun bao, chun-hong pan, zheng-jun zha, jianping fan, a generalized least-squares approach regularized with graph embedding for dimensionality reduction, pattern recognition, vol. 98, 2020.</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>40.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>wen-ze shao, jing-jing xu, long chen, qi ge, li-qian wang, bing-kun bao, hai-bo li, on potentials of regularized wasserstein generative adversarial networks for realistic hallucination of tiny faces, vol. 364, pp. 1-15, 2019.</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>41.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>qing pan, timon rabczuk, gang xu, chong chen*.<span style='mso-spacerun:yes'>� </span>isogeometric analysis for surface pdes with extended loop subdivision, journal of computational physics,<span style='mso-spacerun:yes'>� </span>398: 108892, 2019.</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>42.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>shangde gao, xin liao, xuchong liu, real-time detecting one specific tampering operation in multiple operator chains, journal of real-time image processing, vol. 16, pp. 741-750, 2019.</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>43.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xin liao, yingbo yu, bin li, zhongpeng li, zheng qin, a new payload partition strategy in color image steganography, ieee transactions on circuits and systems for video technology, 2019, doi: 10.1109/tcsvt.2019.2896270.</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>44.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zhuoran li, huichuan duan, kun zhao, yanhui ding. stability of mri radiomics features of hippocampus: an integrated analysis of test-retest and inter-observer variability. ieee access, 7: 97106-97116, 2019.</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>45.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>changsheng li, chong liu, lixin duan, peng gao, kai zheng, reconstruction regularized deep metric learning for multi-label image classification, ieee transactions on neural networks and learning systems, doi: 10.1109/tnnls.2019.2924023, 2019</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>46.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>ni kang, wu yiquan, wang peng. scene classification from synthetic aperture radar images using generalized compact channel-boosted high-order orderless pooling network. remote sensing, 2019, 11(9), 1079.</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>47.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>ni kang, wang peng, wu yiquan. high-order generalized orderless pooling networks for synthetic-aperture radar scene classification. ieee geoscience and remote sensing letters, 2019, 16(11): 1716-1720.</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>48.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>ni kang, wu yiquan, wang peng. scene classification from remote sensing images using mid-level deep feature learning. international journal of remote sensing, 2019, 41(4): 1415-1436.</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>49.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>ni kang, wu yiquan. river channel extraction from synthetic aperture radar images based on region-based active contour model. signal, image and video processing, 2019, 13: 1105-1112.</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>50.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>meiling wang, wei shao, xiaoke hao, li shen, daoqiang zhang. identify consistent cross-modality imaging genetic patterns via discriminant sparse canonical correlation analysis. ieee/acm transactions on computational biology and bioinformatics, in press. doi: 10.1109/tcbb.2019.2944825</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>51.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>aihua zheng, naipeng ye, chenglong li*, xiaowang, jin tang. multi-modal foreground detection via<span style='mso-spacerun:yes'>� </span>inter- and intra-modality-consistent low-rank separation. neurocomputing, vol.371, pp. 27-38, 2020.</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>52.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>aihua zheng, jiacheng dong, xianmin lin, lidan liu, bo jiang, bin luo. visual cognition inspired multi-view vehicle re-identification via laplacian-regularized correlative sparse ranking.<span style='mso-spacerun:yes'>� </span>cognitive computation, pp. 1-14, 2019 (online).</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>53.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>cairong zhao,kang c, di z, zhaoxiang z, et al. uncertainty-optimized deep learning model for small-scale person re-identification[j]. science china information sciences, vol. 62, issue 12, 220102:1-13, 2019</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>54.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zhenbing zhao, zhen zhen, lei zhang, yincheng qi, yinghui kong, ke zhang. insulator detection method in inspection image based on improved faster r-cnn. energies, 2019, 12(7), 1204, https://doi.org/10.3390/en12071204.</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>55.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>lin gao, jie yang, tong wu, yu-jie yuan, hongbo fu, yu-kun lai, hao (richard) zhang, sdm-net: deep generative network for structured deformable mesh, acm transactions on graphics, 2019, 37(6), 243:1-243:15</span></span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l1 level1 lfo12'><span style='mso-bookmark:ole_link51'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family:"times new roman"'><span style='mso-list:ignore'>56.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yu-jie yuan, yu-kun lai, tong wu, shihong xia, lin gao, data-driven weight optimization for real-time mesh deformation, graphical models, vol. 104, 2019</span></span></p> <p class=af0><span lang=en-us><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:2'><a name="_toc40189734"></a><a name="_toc24098165"></a><a name="_toc532562252"></a><a name="_toc532391221"><span style='mso-bookmark:_toc532562252'><span style='mso-bookmark:_toc24098165'><span style='mso-bookmark:_toc40189734'><b style='mso-bidi-font-weight:normal'><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>�v�q rir</span></b></span></span></span></a><b style='mso-bidi-font-weight:normal'><span lang=en-us><o:p></o:p></span></b></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l2 level1 lfo14'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>�s</span><span style='font-family:�[so'>��cg<span lang=en-us>, </span>h�\ֆ<span lang=en-us>, </span>h��z�^<span lang=en-us>.</span>�p0r<span lang=en-us>nurbs</span>�f�~gяݍ�y�v�_����{�e�l<span lang=en-us>.</span>���{</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>:g���r����n�vb_f[f[�b �</span><span lang=en-us>2019,31(1):26-30. (ei</span><span style='font-family:�[so; mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'> �n�~</span><span lang=en-us>)</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l2 level1 lfo14'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>2.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> _\r` �ng�rf</span><span lang=en-us>*</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'> ��s�t ��f][s^ ����� � _s��s �b'k�h</span><span lang=en-us>. </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>�w�n��ws�yz�u���yf[`n�tv^l�o ��v^ё�h�ur{|�{�lxvz</span><span lang=en-us>. </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>5up[n�oo`f[�b �</span><span lang=en-us>2019,41:1-9</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>�</span><span lang=en-us>ei</span><span style='font-family: �[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'>�</span><span lang=en-us>20193707417180</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l2 level1 lfo14'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>3.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>ng�rf</span><span lang=en-us>*</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'> � _b ��s�t �"��^pg ��f][s^ � _s��s �b'k�h �����</span><span lang=en-us>. </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>b�t^ё�h�u��pencc�c�vrs��tɩb�{�l</span><span lang=en-us>. </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>uir;sf[�] zf[bg�_ �</span><span lang=en-us>2019,36(4):548-556</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l2 level1 lfo14'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>4.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> _�tf �/om_�l �w%�7hag�fb��bt</span><span lang=en-us>[j]</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'> ����{:g���r����n�vb_f[f[�b �</span><span lang=en-us>31(7):1221-1228</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>2019. (ei)</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l2 level1 lfo14'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>5.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>ѐ_��� �/om_�l �wq gĉte�f�s�~q�viq�n�fb�����</span><span lang=en-us>[j], </span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>�vf[f[�b �</span><span lang=en-us>40(1):46-53</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>2019.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l2 level1 lfo14'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>6.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>��ews ��q��` ��s gޘ � _f[fk �l�ёey</span><span lang=en-us>. </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>9eۏ'ylce\!j�w�[�s�v�v�p�s���{�l</span><span lang=en-us>[j]</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'> ����{:g���r����n�vb_f[f[�b �</span><span lang=en-us>31(7):1148-1155</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>2019. (ei)</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l2 level1 lfo14'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>7.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>l�o</span><span lang=en-us>, </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>ng�f</span><span lang=en-us>, </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>�����q</span><span lang=en-us>, </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>n�lf</span><span lang=en-us>. </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>�~t</span><span lang=en-us>cnn</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>nrrr�~_g�v�zso9sm��{�l</span><span lang=en-us>[j], </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>s�n�]n'yf[f[�b�6q�yf[hr �</span><span lang=en-us>45(5):413-420</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> �</span><span lang=en-us>2019. (</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>8h�_</span><span lang=en-us>)</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l2 level1 lfo14'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>8.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>ng_lf �u�in�q ���ss\ �!�� �ng�d ��m�^^y�~q�~!j�w�s)�~��</span><span lang=en-us>[j]</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'> ��] z�yf[f[�b �</span><span lang=en-us>41(10):1229-1239, 2019. (ei)</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l2 level1 lfo14'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>9.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>�l�q ��^k� ��y�b �r�~] ��w�nws�y^y�~q�~�vnol]eq�szz�w���qr�g�e�l</span><span lang=en-us>[j]</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'> �o��nf[�b ��]u_(u�_�qhr �</span><span lang=en-us>2019.</span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>�</span><span lang=en-us>ei</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'> �</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l2 level1 lfo14'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>10.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>u�/cuq �p�?�� �b�<span lang=en-us>. </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>�w�n�m�^f[`n�v��5u�~�ɖɉ�hkmxvz�~��</span><span lang=en-us>[j]. </span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>^n5u�r �</span><span lang=en-us>2019, 32(9): 11-23.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l2 level1 lfo14'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>11.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>b���w �ΐy��[ �u�/cuq �_l1r� �b�<span lang=en-us>. </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>�~t�la�r:g6r�v�v�[</span><span lang=en-us>gan</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>��h�v�pub</span><span lang=en-us>[j]. </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>5ukmn�nh� �</span><span lang=en-us>2019, 56(19): 64-69.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l2 level1 lfo14'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>12.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>b���w �_l1r� �u�/cuq �ΐy��[ �b�<span lang=en-us>. </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>�w�n9eۏ</span><span lang=en-us>ssd</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>!j�w�v��5u�~��]�h�v�pёwq�hkm�e�l</span><span lang=en-us>[j]. </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>5ukmn�nh� �q�~���s�eg�</span><span lang=en-us>2019-09-29.</span></p> <p class=af0 style='margin-left:21.0pt;text-indent:-21.0pt;mso-list:l2 level1 lfo14'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>13.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>4to� ��g�v:_ �퐉sc� �u�/cuq</span><span lang=en-us>. </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>�f[`nz�u�[ɩޏ�cws�y^y�~q�~�v�pr{|�e�l</span><span lang=en-us>[j]. </span><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>�o�syt</span><span lang=en-us>, 2019, 35(10): 1747-1752.</span></p> <p class=af0><span lang=en-us><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:2'><a name="_toc40189735"></a><a name="_toc24098166"></a><a name="_toc532562253"></a><a name="_toc532391222"><span style='mso-bookmark:_toc532562253'><span style='mso-bookmark:_toc24098166'><span style='mso-bookmark:_toc40189735'><b style='mso-bidi-font-weight:normal'><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>�ve�o��</span></b></span></span></span></a><b style='mso-bidi-font-weight:normal'><span lang=en-us><o:p></o:p></span></b></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yuanzhi liang, yalong bai, wei zhang, xueming qian, li zhu, tao mei, vrr-vg: refocusing visually-relevant relationships, ieee iccv, 2019.</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>2.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xinyu li, wei zhang, tong shen, tao mei. everyone is a cartoonist: selfie cartoonization with attentive adversarial networks. ieee icme, 2019.</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>3.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>wenqi ren, jiaolong yang, senyou deng, david wipf, xiaochun cao, and xin tong, face video deblurring using 3d facial priors, ieee international conference on computer vision (iccv)(2019), pp: 9388 9397, 2019, seoul, korea</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>4.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>liu, yuchuan; tan, xiaoheng; wang, pin; li, yongming*; zhang, yanling. recognition algorithm of parkinson's disease based on weighted local discriminant preservation projection embedded ensemble algorithm. conference: bibe 2019 - the third international conference on biological information and biomedical engineering, 06/20/2019 - 06/22/2019 at hangzhou, china</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>5.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>li, yongming. feature and instance learning of speech data of parkinson's disease,<span style='mso-spacerun:yes'>� </span>2019 international conference on soft computing &amp; machine learning (scml2019)</span><span style='font-family: �[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>april 26th-29th , 2019, wuhuan, china</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>6.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>x. yao, d. she, s. zhao, j. liang, y.-k. lai, j. yang, attention-aware polarity sensitive embedding for affective image retrieval, iccv, 2019</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>7.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>c. zhan, d. she, s. zhao, m.-m. cheng, j. yang, zero-shot emotion recognition via affective structural embedding, iccv, 2019</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>8.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>x. wu, n. wen, j. liang, y.-k. lai, d. she, m.-m. cheng, j. yang, joint acne image grading and counting via label distribution learning, iccv, 2019</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>9.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>x. wu, c. zhan, y.-k. lai, m.-m. cheng, j. yang, ip102: a large-scale benchmark dataset for insect pest recognition, cvpr, 2019</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>10.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>x. sun, l. chen, j. yang, learning from web data using adversarial discriminative neural networks for fine-grained classification, aaai, 2019</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>11.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>l. chen, j. yang, recognizing the style of visual arts via adaptive cross-layer correlation, acm mm, 2019</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>12.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>lu bai, yuhang jiao, </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>]=n#k</span><span lang=en-us>(</span><span style='font-family: �[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'>���\o�</span><span lang=en-us>), edwin r.hancock. learning deep representations for graph classification. ecml-pkdd 2019 (</span><span style='font-family:�[so; mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'>�_</span><span lang=en-us>ei</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>�h"} �</span><span lang=en-us>ccf b)</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>13.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yibo chai, yahu cong, lu bai, </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>]=n#k</span><span lang=en-us>. loan recommendation in p2p lending investment networks: a hybrid graph convolution approach. ieee international conference on industrial engineering and engineering management, ieem 2019. </span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>14.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yue wang, yao wan, chenwei zhang, lu bai, </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>]=n#k</span><span lang=en-us>, philip s. yu. competitive multi-agent deep reinforcement learning with counterfactual thinking. icdm 2019.</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>15.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yuhang jiao,yueting yang, </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>]=n#k</span><span lang=en-us>, lu bai. an attributed graph embedding method using the tree-index algorithm. in proceedings of 12th iapr-tc-15 international workshop on graph-based representations in pattern recognition, gbrpr 2019, lecture notes in computer science 11510, springer 2019, isbn 978-3-030-20080-0,pp.172-182.</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>16.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>xiao-yu zhang, haichao shi, changsheng li, kai zheng, xiaobin zhu, lixin duan: learning transferable self-attentive representations for action recognition in untrimmed videos with weak supervision. in proc. aaai conference on artificial intelligence (aaai), 1-8, 2019.</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>17.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>haichao shi, xiao-yu zhang*, shupeng wang, ge fu and jianqi tang: synchronized detection and recovery of steganographic messages with adversarial learning. in proc. international conference on computational science (iccs), 31-43, 2019.</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>�</span><span lang=en-us>*</span><span style='font-family: �[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'>qq tn\o �</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>18.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yupeng cao, jing li, qiufeng wang, kaizhu huang, and rui zhang. improving script identification by integrating text recognition information, the 26th international conference on neural information processing (iconip2019), sydney, australia. </span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>19.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>z. zhao, z. bao, z. zhang, n. cummins, h. wang, and b. w. schuller,  attention-enhanced connectionist temporal classification for discrete speech emotion recognition, in proceedings interspeech 2019, 20th annual conference of the international speech communication association, pp. 206-210, september 2019, graz, austria</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>20.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>wenguang ma, wei ma, rethinking faster r-cnn for window detection in street scenes: the 14th asia pacific international conference on information science and technology (apic-ist 2019), issn: 2093-0542, pp: 242-244, 2019, beijing, china.</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>21.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>shen chen, wei ma, yue qin, cnn-based stereoscopic image inpainting, the 10th international conference on image and graphics (icig 2019), lncs: 11903, pp: 95-106, 2019, beijing, china.</span></p> <p class=msolistparagraph style='margin-left:18.0pt;text-indent:-18.0pt; mso-char-indent-count:0;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>22.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jiangtao kong, rongchao xu, junliang xing, kai li, wei ma, spatial temporal attentional glimps for human activity classification in video, ieee international conference on image processing (icip 2019), isbn: 978-1-5386-6249-6, pp: 4040-4044, 2019, taipei, taiwan, china.</span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>23.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>runzhong wang, junchi yan </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>���\o�</span><span lang=en-us>, and xiaokang yang. learning combinatorial embedding networks for deep graph matching: 2019 ieee international conference on computer vision (iccv) (2019), seoul, korea.</span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>24.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>tianzhe wang, zetian jiang, and junchi yan </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>���\o�</span><span lang=en-us>. clustering-aware multiple graph matching via decayed pairwise matching composition: 2020 thirty-fourth aaai conference on artificial intelligence (aaai) (2020), new york, ny, usa.</span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>25.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>shiming ge, shengwei zhao, xindi gao, jia li. fewer-shots and lower-resolutions: towards ultrafast face recognition in the wild: the 27th acm international conference on multimedia, isbn-13: 9781450368896, pp:229-237, 2019, nice, france.</span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>26.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yingying hua, shiming ge, xindi gao, xin jin, dan zeng. defending against adversarial examples via soft decision trees: the 27th acm international conference on multimedia, isbn-13: 9781450368896, pp:2106-2114, 2019, nice, france.</span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>27.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>chunhui zhang, shiming ge, yingying hua, dan zeng. robust deep tracking with two-step augmentation discriminative correlation filters: ieee international conference on multimedia and expo (icme): isbn-13: 9781538695524, pp: 1774-1779, 2019, shanghai, china.</span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>28.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>shengwei zhao, xindi gao, shikun li, shiming ge. low-resolution face recognition in the wild with mixed-domain distillation: the fifth ieee international conference on multimedia big data, 2019, singapore.</span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>29.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>shanxiong chen, xu han, xiaolong wang, hui ma<span style='mso-spacerun:yes'>� </span>a recognition method of ancient yi script based on deep learning<span style='mso-spacerun:yes'>� </span>icaps 2019 </span><span style='font-family: �[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family:"times new roman"'> �</span><span lang=en-us>international conference on automated planning and scheduling</span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>30.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>kexin chen, xue zhou*, qidong zhou and hongbing xu. adversarial learning-based data augmentation for rotation-robust human tracking: 2019 ieee conference on acoustics, speech and signal processing (icassp) (2019), isbn: 978-1-5386-4658-8, pp: 1942-1946, 2019, brighton, uk</span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>31.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>jie yang, xue zhou*, zheng zhou and hao wen. adaptive fusion of rgbd data for two-stream fcn-based level set tracking: 2019 ieee conference on visual communications and image processing(vcip)(2019), accepted, sydney, australia</span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>32.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>binbin song, xue zhou*, wei xiang, hao wen. improving person search by adaptive feature pyramid-based multi-scale matching: 2019 ieee conference on visual communications and image processing(vcip)(2019), accepted, sydney, australia</span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>33.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>mengying zhang, changsheng li, xiangfeng wang, multi-view metric learning for multi-label image classification, proceedings of the 26nd ieee international conference on image processing (icip), 2134-2138, 2019.</span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>34.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>ni kang, wu yiquan, zhou fei, hao xiaohui. multi-order feature fusion joint training network for remote sensing scene classification[c]. 2019 international conference on electronic engineering and informatics.</span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>35.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>qiu d, zhang y, feng x, et al. machine reading comprehension using structural knowledge graph-aware network[c]//proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (emnlp-ijcnlp). 2019: 5898-5903. </span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>36.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>rui wang, huaibo huang, xufeng zhang, jixin ma and aihua zheng*. a novel distance learning for elastic cross-modal audio-visual matching: 2019 ieee international conference on multimedia &amp; expo workshops (icmew) (2019), pp: 300-305, 2019, shanghai, china. best student paper award.</span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>37.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>yuanpeng tan, chunyu deng, aixue jiang, and zhenbing zhao. insulator segmentation based on community detection and hybrid feature[c]. the 10th international conference on image and graphics (icig 2019), aug. 23-25 2019, beijing, china, lncs 11901, pp. 267-283.</span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>38.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>zihui yin, rong meng, junhu dong, jingyi lang, zhenbing zhao. a co-random walks segmentation method for aerial insulator video images[c]. 12th international congress on image and signal processing, biomedical engineering and informatics (cisp-bmei 2019), huaqiao, china, 2019.10.</span></p> <p class=af0 style='margin-left:18.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo16'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>39.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>hsien-yu meng, lin gao, yu-kun lai, dinesh manocha, vv-net: voxel vae net with group convolutions for point cloud segmentation, international conference in computer vision, 2019</span></p> <p class=af0><span lang=en-us><o:p>&nbsp;</o:p></span></p> <p class=af0 style='mso-outline-level:2'><a name="_toc40189736"></a><a name="_toc24098167"></a><a name="_toc532562254"><span style='mso-bookmark: _toc24098167'><span style='mso-bookmark:_toc40189736'><b style='mso-bidi-font-weight: normal'><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'>�v�qo��</span></b></span></span></a><b style='mso-bidi-font-weight:normal'><span lang=en-us><o:p></o:p></span></b></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l6 level1 lfo18'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>1.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span style='font-family:�[so;mso-ascii-font-family: "times new roman";mso-hansi-font-family:"times new roman"'>ng�rf</span><span lang=en-us>*</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman"; mso-hansi-font-family:"times new roman"'> �r�s�] ��s�t</span><span lang=en-us>. </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>�w�n�rcg@\�$r r�oc�bq_l]eqɩb�{�l�v^ё�h�uƌ r �</span><span lang=en-us>2019</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>-n�vuir;sf[�] z'yo �</span><span lang=en-us>2019</span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> �</span><span lang=en-us>poster </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'>�x�b�</span><span lang=en-us>15b-188 </span><span style='font-family:�[so;mso-ascii-font-family:"times new roman";mso-hansi-font-family: "times new roman"'> � �</span><span lang=en-us>2019.11.14-16</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l6 level1 lfo18'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>2.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>haichao shi, xiao-yu zhang*, changsheng li: weakly-supervised action recognition and localization via knowledge transfer. in proc. chinese conference on pattern recognition and computer vision (prcv), 205-216, 2019. </span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l6 level1 lfo18'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>3.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>qiu d, bao l, tian z, et al. reconstructed option rereading network for opinion questions reading comprehension[c]//china national conference on chinese computational linguistics. springer, cham, 2019: 93-104.</span></p> <p class=msolistparagraph style='margin-left:21.0pt;text-indent:-21.0pt; mso-char-indent-count:0;mso-list:l6 level1 lfo18'><![if !supportlists]><span lang=en-us style='mso-fareast-font-family:"times new roman";mso-bidi-font-family: "times new roman"'><span style='mso-list:ignore'>4.<span style='font:7.0pt "times new roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span></span></span><![endif]><span lang=en-us>lin x, liao x, xu t, et al. rumor detection with hierarchical recurrent convolutional neural network[c]//ccf international conference on natural language processing and chinese computing. springer, cham, 2019: 338-348.</span></p> </td> </tr> </table> </div> <p class=msonormal align=left style='text-align:left;mso-pagination:widow-orphan'><span lang=en-us style='font-size:12.0pt;font-family:�[so;mso-bidi-font-family:�[so; mso-font-kerning:0pt'><o:p>&nbsp;</o:p></span></p> </div> </body> </html>
网站地图